Skip to main content

llama-index embeddings databricks integration

Project description

LlamaIndex Embeddings Integration: Databricks

This integration adds support for embedding models hosted on the databricks platform via serving endpoints. The API follows the specifications of OpenAI, so this integration simply adapts the llama-index-embeddings-openai integration and internally uses the openai Python API library, too.

The signature furthermore aligns with the existing Databricks LLM integration with respect to the naming of the model, api_key and endpoint variables to ensure a smooth user experience.

Installation

pip install llama-index
pip install llama-index-embeddings-databricks

Usage

Passing the api_key and endpoint directly as arguments:

import os
from llama_index.core import Settings
from llama_index.embeddings.databricks import DatabricksEmbedding

# Set up the DatabricksEmbedding class with the required model, API key and serving endpoint
embed_model = DatabricksEmbedding(
    model="databricks-bge-large-en",
    api_key="<MY TOKEN>",
    endpoint="<MY ENDPOINT>",
)
Settings.embed_model = embed_model

# Embed some text
embeddings = embed_model.get_text_embedding(
    "The DatabricksEmbedding integration works great."
)

Using environment variables:

export DATABRICKS_TOKEN=<MY TOKEN>
export DATABRICKS_SERVING_ENDPOINT=<MY ENDPOINT>
import os
from dotenv import load_dotenv
from llama_index.core import Settings
from llama_index.embeddings.databricks import DatabricksEmbedding

load_dotenv()
# Set up the DatabricksEmbedding class with the required model, API key and serving endpoint
embed_model = DatabricksEmbedding(model="databricks-bge-large-en")
Settings.embed_model = embed_model

# Embed some text
embeddings = embed_model.get_text_embedding(
    "The DatabricksEmbedding integration works great."
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_embeddings_databricks-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_databricks-0.3.0.tar.gz
Algorithm Hash digest
SHA256 6b47be04d47dde78e9743999881dcf422210c8cda3bf41150319507b160e5def
MD5 663812480324d5e69256e8900fd275f2
BLAKE2b-256 eb3611934fe002c9e293c9371be3b5edaf7c28469e69e1f1ae42cbd760ee3409

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_databricks-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_databricks-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2aff812442e36e9eed6d8897e8482e7fb6c64b6899e966d1c710cc26f4e2dd80
MD5 6744f4143018370dcb709d686a780cd5
BLAKE2b-256 310516bae4c7dae142acd9c1b84891d66b2a10f01ba474867018b430489a3a06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page