Skip to main content

llama-index embeddings vertex integration

Project description

LlamaIndex Embeddings Integration: Vertex

Implements Vertex AI Embeddings Models:

Model Release Date
textembedding-gecko@003 December 12, 2023
textembedding-gecko@002 November 2, 2023
textembedding-gecko-multilingual@001 November 2, 2023
textembedding-gecko@001 June 7, 2023
multimodalembedding

Note: Currently Vertex AI does not support async on multimodalembedding. Otherwise, VertexTextEmbedding supports async interface.


New Features

  • Flexible Credential Handling:

    • Credential Management: Supports both direct credentials and service account info for secure API access.
  • Model Name Handling in Embedding Requests:

    • The _get_embedding_request function now accepts the model_name parameter, allowing it to manage models that do not support the task_type parameter, like textembedding-gecko@001.

Example Usage

from google.oauth2 import service_account
from llama_index.embeddings.vertex import VertexTextEmbedding

credentials = service_account.Credentials.from_service_account_file(
    "path/to/your/service-account.json"
)

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    credentials=credentials,
)

Alternatively, you can directly pass the required service account parameters:

from llama_index.embeddings.vertex import VertexTextEmbedding

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    client_email="your-service-account-email",
    token_uri="your-token-uri",
    private_key_id="your-private-key-id",
    private_key="your-private-key",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_vertex-0.1.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_vertex-0.1.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.1.1.tar.gz
Algorithm Hash digest
SHA256 508453e646f538dd063b6fbf39f04b92e68416b1f58939e7372bb32f5d5a314e
MD5 d85b9cbfb462e89c0ff07bccd5383e36
BLAKE2b-256 3433dff2ebdf26c679bbbe5cc4adc25b92c32ff89c4cc7b1433e8183ba12a84c

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_vertex-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d0fd73cb4a8f52e14b8011ff1b0c3836cc680deed1eb19186aa936cfec4a6f41
MD5 7d5f8d9d668d0ce2185b8668cc52ab33
BLAKE2b-256 21708b2d2afd1d45b347b7b593cf0c51c5ca9c9a048631dee35f9ac49daa3aee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page