Skip to main content

llama-index embeddings vertex integration

Project description

LlamaIndex Embeddings Integration: Vertex

Implements Vertex AI Embeddings Models:

Model Release Date
textembedding-gecko@003 December 12, 2023
textembedding-gecko@002 November 2, 2023
textembedding-gecko-multilingual@001 November 2, 2023
textembedding-gecko@001 June 7, 2023
multimodalembedding

Note: Currently Vertex AI does not support async on multimodalembedding. Otherwise, VertexTextEmbedding supports async interface.


New Features

  • Flexible Credential Handling:

    • Credential Management: Supports both direct credentials and service account info for secure API access.
  • Model Name Handling in Embedding Requests:

    • The _get_embedding_request function now accepts the model_name parameter, allowing it to manage models that do not support the task_type parameter, like textembedding-gecko@001.

Example Usage

from google.oauth2 import service_account
from llama_index.embeddings.vertex import VertexTextEmbedding

credentials = service_account.Credentials.from_service_account_file(
    "path/to/your/service-account.json"
)

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    credentials=credentials,
)

Alternatively, you can directly pass the required service account parameters:

from llama_index.embeddings.vertex import VertexTextEmbedding

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    client_email="your-service-account-email",
    token_uri="your-token-uri",
    private_key_id="your-private-key-id",
    private_key="your-private-key",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_vertex-0.2.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_vertex-0.2.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.2.1.tar.gz
Algorithm Hash digest
SHA256 37c21ee276744db7e6c27bb2e7edced083a7c836e68362e317972686039122bc
MD5 4a06b1c9816207c635eafe8f4bcef973
BLAKE2b-256 a3b9f507465460d0fe56b9f8263421da1d8bbd2393572b0a7a796edc916cd495

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_vertex-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5d93f9d12239887381cf766b468368d99ad3a2b14824af504e91a73582198c72
MD5 0b12df58a7da5d8e54a7c96560e7cd03
BLAKE2b-256 313cf1c4586940e3d38f07b4a188b524650af753c275b0f337d2efa9c4db2711

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page