Skip to main content

llama-index embeddings vertex integration

Project description

LlamaIndex Embeddings Integration: Vertex

Implements Vertex AI Embeddings Models:

Model Release Date
textembedding-gecko@003 December 12, 2023
textembedding-gecko@002 November 2, 2023
textembedding-gecko-multilingual@001 November 2, 2023
textembedding-gecko@001 June 7, 2023
multimodalembedding

Note: Currently Vertex AI does not support async on multimodalembedding. Otherwise, VertexTextEmbedding supports async interface.


New Features

  • Flexible Credential Handling:

    • Credential Management: Supports both direct credentials and service account info for secure API access.
  • Model Name Handling in Embedding Requests:

    • The _get_embedding_request function now accepts the model_name parameter, allowing it to manage models that do not support the task_type parameter, like textembedding-gecko@001.

Example Usage

from google.oauth2 import service_account
from llama_index.embeddings.vertex import VertexTextEmbedding

credentials = service_account.Credentials.from_service_account_file(
    "path/to/your/service-account.json"
)

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    credentials=credentials,
)

Alternatively, you can directly pass the required service account parameters:

from llama_index.embeddings.vertex import VertexTextEmbedding

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    client_email="your-service-account-email",
    token_uri="your-token-uri",
    private_key_id="your-private-key-id",
    private_key="your-private-key",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_vertex-0.3.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_vertex-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.3.0.tar.gz
Algorithm Hash digest
SHA256 5e4a53b050e06d9f4310ae20777ae4ae6c662657fb0734aa83de83e305dad32a
MD5 3a8fe9962a092d82f8a72157de9b4ea6
BLAKE2b-256 e00d89f57f68670ed71efd098de960e6aa16138880b982e987a0b634f5f11864

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_vertex-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40038031a919fa2b325a3c8430e459d7877777c5769fdd5f7149607e5c1372cf
MD5 7b9090e67755c642a361568974aa13e0
BLAKE2b-256 7ea4d4281ec88cedaac947b7b63f2b1641f2f80a8f8f18f03aeed5a5004c0a1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page