Skip to main content

llama-index embeddings vertex integration

Project description

LlamaIndex Embeddings Integration: Vertex

Implements Vertex AI Embeddings Models:

Model Release Date
textembedding-gecko@003 December 12, 2023
textembedding-gecko@002 November 2, 2023
textembedding-gecko-multilingual@001 November 2, 2023
textembedding-gecko@001 June 7, 2023
multimodalembedding

Note: Currently Vertex AI does not support async on multimodalembedding. Otherwise, VertexTextEmbedding supports async interface.


New Features

  • Flexible Credential Handling:

    • Credential Management: Supports both direct credentials and service account info for secure API access.
  • Model Name Handling in Embedding Requests:

    • The _get_embedding_request function now accepts the model_name parameter, allowing it to manage models that do not support the task_type parameter, like textembedding-gecko@001.

Example Usage

from google.oauth2 import service_account
from llama_index.embeddings.vertex import VertexTextEmbedding

credentials = service_account.Credentials.from_service_account_file(
    "path/to/your/service-account.json"
)

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    credentials=credentials,
)

Alternatively, you can directly pass the required service account parameters:

from llama_index.embeddings.vertex import VertexTextEmbedding

embedding = VertexTextEmbedding(
    model_name="textembedding-gecko@003",
    project="your-project-id",
    location="your-region",
    client_email="your-service-account-email",
    token_uri="your-token-uri",
    private_key_id="your-private-key-id",
    private_key="your-private-key",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_vertex-0.3.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_vertex-0.3.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.3.1.tar.gz
Algorithm Hash digest
SHA256 5cd0ccadd9697e63e3c1bb115a991969b4eaee5e87e4beb9fe1f5f817b349eb1
MD5 dd09915261700d0acf86c7199ee01bc9
BLAKE2b-256 536fb282d05012ccffd67873509de618d40528c92d3e8831ea1c1cc1f65821b5

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_vertex-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_vertex-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 91ab5fb74f98b6c98b18fb3d1e0906c72fd299bf085745f023a390c2e4be0691
MD5 573953b5fedd43958ad401e7589a4ef1
BLAKE2b-256 b4a3fbb4be12015b3463bf916458a0527b43d502560ad46589092971a0f11684

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page