Skip to main content

llama-index llms cerebras integration

Project description

LlamaIndex Llms Integration: Cerebras

At Cerebras, we've developed the world's largest and fastest AI processor, the Wafer-Scale Engine-3 (WSE-3). The Cerebras CS-3 system, powered by the WSE-3, represents a new class of AI supercomputer that sets the standard for generative AI training and inference with unparalleled performance and scalability.

With Cerebras as your inference provider, you can:

  • Achieve unprecedented speed for AI inference workloads
  • Build commercially with high throughput
  • Effortlessly scale your AI workloads with our seamless clustering technology

Our CS-3 systems can be quickly and easily clustered to create the largest AI supercomputers in the world, making it simple to place and run the largest models. Leading corporations, research institutions, and governments are already using Cerebras solutions to develop proprietary models and train popular open-source models.

Want to experience the power of Cerebras? Check out our website for more resources and explore options for accessing our technology through the Cerebras Cloud or on-premise deployments!

For more information about Cerebras Cloud, visit cloud.cerebras.ai. Our API reference is available at inference-docs.cerebras.ai.

Installation

using poetry:

poetry add llama-index-llms-cerebras

or using pip:

pip install llama-index-llms-cerebras

Basic Usage

Get an API Key from cloud.cerebras.ai and add it to your environment variables:

export CEREBRAS_API_KEY=<your api key>

Then try out one of these examples:

import os

from llama_index.core.llms import ChatMessage
from llama_index.llms.cerebras import Cerebras

llm = Cerebras(model="llama3.1-70b", api_key=os.environ["CEREBRAS_API_KEY"])

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)

Or alternatively with streaming:

import os

from llama_index.llms.cerebras import Cerebras

llm = Cerebras(model="llama3.1-70b", api_key=os.environ["CEREBRAS_API_KEY"])

response = llm.stream_complete("What is Generative AI?")
for r in response:
    print(r.delta, end="")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_cerebras-0.1.0.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_cerebras-0.1.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_cerebras-0.1.0.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_cerebras-0.1.0.tar.gz
Algorithm Hash digest
SHA256 ca6b1a74c54e3b7a192cca0f5a180938f8de2d2902ef16cbc17c19361ffe4783
MD5 d0b528b6dd663f0b290dc08a488fa63c
BLAKE2b-256 399a1f6c52e273f1939667de7391de61472d3c7bbb0134b94f8e84dcb6eec677

See more details on using hashes here.

File details

Details for the file llama_index_llms_cerebras-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_cerebras-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ca4a4ce65bc474f43d2525eef4769df27fa9fc642f0e071023ffec2b4c7baf0a
MD5 236d4acc606c89ac979532cee6c01e0a
BLAKE2b-256 8aa3a6e8e6ec6d6b1a539456d60d78e44324f1df284172e22b8516b1c86ffdb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page