Skip to main content

llama-index llms deepinfra integration

Project description

LlamaIndex Llms Integration: DeepInfra

Installation

First, install the necessary package:

pip install llama-index-llms-deepinfra

Initialization

Set up the DeepInfraLLM class with your API key and desired parameters:

from llama_index.llms.deepinfra import DeepInfraLLM
import asyncio

llm = DeepInfraLLM(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",  # Default model name
    api_key="your-deepinfra-api-key",  # Replace with your DeepInfra API key
    temperature=0.5,
    max_tokens=50,
    additional_kwargs={"top_p": 0.9},
)

Synchronous Complete

Generate a text completion synchronously using the complete method:

response = llm.complete("Hello World!")
print(response.text)

Synchronous Stream Complete

Generate a streaming text completion synchronously using the stream_complete method:

content = ""
for completion in llm.stream_complete("Once upon a time"):
    content += completion.delta
    print(completion.delta, end="")

Synchronous Chat

Generate a chat response synchronously using the chat method:

from llama_index.core.base.llms.types import ChatMessage

messages = [
    ChatMessage(role="user", content="Tell me a joke."),
]
chat_response = llm.chat(messages)
print(chat_response.message.content)

Synchronous Stream Chat

Generate a streaming chat response synchronously using the stream_chat method:

messages = [
    ChatMessage(role="system", content="You are a helpful assistant."),
    ChatMessage(role="user", content="Tell me a story."),
]
content = ""
for chat_response in llm.stream_chat(messages):
    content += chat_response.message.delta
    print(chat_response.message.delta, end="")

Asynchronous Complete

Generate a text completion asynchronously using the acomplete method:

async def async_complete():
    response = await llm.acomplete("Hello Async World!")
    print(response.text)


asyncio.run(async_complete())

Asynchronous Stream Complete

Generate a streaming text completion asynchronously using the astream_complete method:

async def async_stream_complete():
    content = ""
    response = await llm.astream_complete("Once upon an async time")
    async for completion in response:
        content += completion.delta
        print(completion.delta, end="")


asyncio.run(async_stream_complete())

Asynchronous Chat

Generate a chat response asynchronously using the achat method:

async def async_chat():
    messages = [
        ChatMessage(role="user", content="Tell me an async joke."),
    ]
    chat_response = await llm.achat(messages)
    print(chat_response.message.content)


asyncio.run(async_chat())

Asynchronous Stream Chat

Generate a streaming chat response asynchronously using the astream_chat method:

async def async_stream_chat():
    messages = [
        ChatMessage(role="system", content="You are a helpful assistant."),
        ChatMessage(role="user", content="Tell me an async story."),
    ]
    content = ""
    response = await llm.astream_chat(messages)
    async for chat_response in response:
        content += chat_response.message.delta
        print(chat_response.message.delta, end="")


asyncio.run(async_stream_chat())

For any questions or feedback, please contact us at feedback@deepinfra.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_deepinfra-0.3.0.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_deepinfra-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_llms_deepinfra-0.3.0.tar.gz
Algorithm Hash digest
SHA256 1789644c51b36531f4be262f09580ff9135b51ae5f81e58672718ba8e9e19169
MD5 894491cd00840a3a6487669089d4a927
BLAKE2b-256 8060cbf61a9e1982b92b3c4d9d4c53b646a2685f36e20768e2e643c2748d471f

See more details on using hashes here.

File details

Details for the file llama_index_llms_deepinfra-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_deepinfra-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c24d2990ac1cab470c33a1b3e233026dca0775d94d5569e1eeb99aa2ba08004e
MD5 5b4c2cecc4fb537777f10bc55fd16ab1
BLAKE2b-256 cda5959a906a8c36a84476c2874266b289b01692c6277c0e3712673e8a4d2f63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page