Skip to main content

llama-index packs agents llm compiler

Project description

LLMCompiler Agent Pack

This LlamaPack implements the LLMCompiler agent paper.

A lot of code came from the source repo, we repurposed with LlamaIndex abstractions. All credits to the original authors for a great work!

A full notebook guide can be found here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LLMCompilerAgentPack --download-dir ./llm_compiler_agent_pack

You can then inspect the files at ./llm_compiler_agent_pack and use them as a template for your own project!

Code Usage

You can download the pack to a directory. NOTE: You must specify skip_load=True - the pack contains multiple files, which makes it hard to load directly.

We will show you how to import the agent from these files!

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
download_llama_pack("LLMCompilerAgentPack", "./llm_compiler_agent_pack")

From here, you can use the pack. You can import the relevant modules from the download folder (in the example below we assume it's a relative import or the directory has been added to your system path).

# setup pack arguments

from llama_index.core.agent import AgentRunner
from llm_compiler_agent_pack.step import LLMCompilerAgentWorker

agent_worker = LLMCompilerAgentWorker.from_tools(
    tools, llm=llm, verbose=True, callback_manager=callback_manager
)
agent = AgentRunner(agent_worker, callback_manager=callback_manager)

# start using the agent
response = agent.chat("What is (121 * 3) + 42?")

You can also use/initialize the pack directly.

from llm_compiler_agent_pack.base import LLMCompilerAgentPack

agent_pack = LLMCompilerAgentPack(tools, llm=llm)

The run() function is a light wrapper around agent.chat().

response = pack.run("Tell me about the population of Boston")

You can also directly get modules from the pack.

# use the agent
agent = pack.agent
response = agent.chat("task")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_agents_llm_compiler-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_agents_llm_compiler-0.3.0.tar.gz
Algorithm Hash digest
SHA256 c4f2deede8503d7aecffff6e7581d1fb24e6abecb3977e2cb2b34e13705cf172
MD5 e135cd9c6a0e1717b48c8389fcccc7bd
BLAKE2b-256 9042d08412eb1b93f4c975c902bbf52a17e19b8d6c097854448e577cbb44371c

See more details on using hashes here.

File details

Details for the file llama_index_packs_agents_llm_compiler-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_agents_llm_compiler-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 397e857ff50d36c57247db5977b161f7b6603648145fc53204380e3d1adf29ef
MD5 7e91dd1ecdbd29110866477a8c0f34c8
BLAKE2b-256 b46d320796ce639f307d7fab699d9cb6fe1c024fdd4ae852acac6e0c44ace03a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page