Skip to main content

llama-index packs corrective_rag paper implementation

Project description

Corrective Retrieval Augmented Generation Llama Pack

This LlamaPack implements the Corrective Retrieval Augmented Generation (CRAG) paper

Corrective Retrieval Augmented Generation (CRAG) is a method designed to enhance the robustness of language model generation by evaluating and augmenting the relevance of retrieved documents through a an evaluator and large-scale web searches, ensuring more accurate and reliable information is used in generation.

This LlamaPack uses Tavily AI API for web-searches. So, we recommend you to get the api-key before proceeding further.

Installation

pip install llama-index llama-index-tools-tavily-research

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack CorrectiveRAGPack --download-dir ./corrective_rag_pack

You can then inspect the files at ./corrective_rag_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./corrective_rag_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
CorrectiveRAGPack = download_llama_pack(
    "CorrectiveRAGPack", "./corrective_rag_pack"
)

# You can use any llama-hub loader to get documents!
corrective_rag = CorrectiveRAGPack(documents, tavily_ai_api_key)

From here, you can use the pack, or inspect and modify the pack in ./corrective_rag_pack.

The run() function contains around logic behind Corrective Retrieval Augmented Generation - CRAG paper.

response = corrective_rag.run("<query>", similarity_top_k=2)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_corrective_rag-0.1.2.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_corrective_rag-0.1.2.tar.gz
Algorithm Hash digest
SHA256 7e876cec9468b3206e256c3aa36a3ec49c1fb4753a4caca224fc3251036ec9ad
MD5 11cec289c5be75a84894e2556575b58f
BLAKE2b-256 bf9098e26d3ec48947055545bb6e461fa773ae49bf1d67a8bc8051e8e8992e07

See more details on using hashes here.

File details

Details for the file llama_index_packs_corrective_rag-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_corrective_rag-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 50a8ce9390cb1724f799287c3411d95e5c16725b1328efe2e13990857c203f10
MD5 6322b45e65ed90a6104426b6a0f2653e
BLAKE2b-256 5143616143b657b0def138dfe2537906b9edac897943c00131a39bfc80ed6f6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page