Skip to main content

llama-index packs fusion_retriever integration

Project description

Fusion Retriever Packs

Hybrid Fusion Pack

This LlamaPack provides an example of our hybrid fusion retriever method.

This specific template fuses results from our vector retriever and bm25 retriever; of course, you can provide any template you want.

Check out the notebook here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack HybridFusionRetrieverPack --download-dir ./hybrid_fusion_pack

You can then inspect the files at ./hybrid_fusion_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./hybrid_fusion_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
HybridFusionRetrieverPack = download_llama_pack(
    "HybridFusionRetrieverPack", "./hybrid_fusion_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./hybrid_fusion_pack.

Then, you can set up the pack like so:

# create the pack
hybrid_fusion_pack = HybridFusionRetrieverPack(
    nodes, chunk_size=256, vector_similarity_top_k=2, bm25_similarity_top_k=2
)

The run() function is a light wrapper around query_engine.query().

response = hybrid_fusion_pack.run("Tell me about a Music celebritiy.")

You can also use modules individually.

# use the fusion retriever
nodes = hybrid_fusion_pack.fusion_retriever.retrieve("query_str")

# use the vector retriever
nodes = hybrid_fusion_pack.vector_retriever.retrieve("query_str")
# use the bm25 retriever
nodes = hybrid_fusion_pack.bm25_retriever.retrieve("query_str")

# get the query engine
query_engine = hybrid_fusion_pack.query_engine

Query Rewriting Retriever Pack

This LlamaPack provides an example of query rewriting through our fusion retriever.

This specific template takes in a single retriever, and generates multiple queries against the retriever, and then fuses the results together.

Check out the notebook here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack QueryRewritingRetrieverPack --download-dir ./query_rewriting_pack

You can then inspect the files at ./query_rewriting_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./query_rewriting_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
QueryRewritingRetrieverPack = download_llama_pack(
    "QueryRewritingRetrieverPack", "./query_rewriting_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./query_rewriting_pack.

Then, you can set up the pack like so:

# create the pack
query_rewriting_pack = QueryRewritingRetrieverPack(
    nodes,
    chunk_size=256,
    vector_similarity_top_k=2,
)

The run() function is a light wrapper around query_engine.query().

response = query_rewriting_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the fusion retriever
nodes = query_rewriting_pack.fusion_retriever.retrieve("query_str")

# use the vector retriever
nodes = query_rewriting_pack.vector_retriever.retrieve("query_str")

# get the query engine
query_engine = query_rewriting_pack.query_engine

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_fusion_retriever-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_fusion_retriever-0.4.0.tar.gz
Algorithm Hash digest
SHA256 d98b30b066b780afe2278fe9a9093013dee7ddf3ccda0270dc4312bf2a231664
MD5 a849be38e1d59ef338b73c652b95aeee
BLAKE2b-256 404283977f637ce266237bdf7ae36a4208a046ed2b4deb81def5b55a0126c0cb

See more details on using hashes here.

File details

Details for the file llama_index_packs_fusion_retriever-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_fusion_retriever-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b74eb326e1fe71348203b2ab1ed729cf03a1e7beb107792935c1577088ab545d
MD5 879063becc664f7c021b5404f3543bd2
BLAKE2b-256 21ee3febc245e3217cb162e627fcb9a9053b224d4e2e86c5e7156a8c2abf72c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page