Skip to main content

llama-index packs infer retrieve rerank integration

Project description

Infer-Retrieve-Rerank LlamaPack

This is our implementation of the paper "In-Context Learning for Extreme Multi-Label Classification by Oosterlinck et al.

The paper proposes "infer-retrieve-rerank", a simple paradigm using frozen LLM/retriever models that can do "extreme"-label classification (the label space is huge).

  1. Given a user query, use an LLM to predict an initial set of labels.
  2. For each prediction, retrieve the actual label from the corpus.
  3. Given the final set of labels, rerank them using an LLM.

All of these can be implemented as LlamaIndex abstractions.

A full notebook guide can be found here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack InferRetrieveRerankPack --download-dir ./infer_retrieve_rerank_pack

You can then inspect the files at ./infer_retrieve_rerank_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./infer_retrieve_rerank_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
InferRetrieveRerankPack = download_llama_pack(
    "InferRetrieveRerankPack", "./infer_retrieve_rerank_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./infer_retrieve_rerank_pack.

Then, you can set up the pack like so:

# create the pack
pack = InferRetrieveRerankPack(
    labels,  # list of all label strings
    llm=llm,
    pred_context="<pred_context>",
    reranker_top_n=3,
    verbose=True,
)

The run() function runs predictions.

pred_reactions = pack.run(inputs=[s["text"] for s in samples])

You can also use modules individually.

# call the llm.complete()
llm = pack.llm
label_retriever = pack.label_retriever

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_infer_retrieve_rerank-0.5.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_infer_retrieve_rerank-0.5.0.tar.gz
Algorithm Hash digest
SHA256 eb503bd375a3b9868933599d2c814b8a3d8513487c94aa7728f7d7c50bef02e4
MD5 ffaa13fc0feff6ed9d064340622f9674
BLAKE2b-256 c93d3fccb50a51c9d76d8abd023b2faf61e016c4a81386108ca5b4012c95fca5

See more details on using hashes here.

File details

Details for the file llama_index_packs_infer_retrieve_rerank-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_infer_retrieve_rerank-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6e2f88861dec47727fc4c371962939b9fc6cdef4a8a45353fd6bcfa2c4473c29
MD5 951974b782460284846446893ce651f6
BLAKE2b-256 b8c165779017fb54118f51977f06246ca90ae73f006c58199381583b96f2f15a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page