Skip to main content

llama-index packs retry_engine_weaviate integration

Project description

Retry Query Engine

This LlamaPack inserts your data into Weaviate and uses the Retry Query Engine for your RAG application.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack

You can then inspect the files at ./weaviate_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./weaviate_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./weaviate_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores.types import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = weaviate_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retreiver
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.1.2.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.1.2.tar.gz
Algorithm Hash digest
SHA256 9d02b781b57714da4c0cd9830fd27127e891303671d1fe9ccb991564dee27f19
MD5 a1628dbb75b6ba3cbcbaa9245856a3d8
BLAKE2b-256 db5247a476e3cbff063226dee40ae4245769a917c17b03e44286d01f6a420008

See more details on using hashes here.

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 305c91253bcedd63bcd7e6433c1e7a26d49b347f10ac54718ecce99158c4e173
MD5 54cb4ef99635131841eff99a14c97f6d
BLAKE2b-256 72549b8374fc6c189a073d7267c0cbae89ed1ce413c240a2de6725143adfdd9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page