Skip to main content

llama-index vector_stores azurecosmosnosql integration

Project description

Azure Cosmos DB for NoSQL Vector Store

This integration makes possible to use Azure Cosmos DB for NoSQL as a vector store in LlamaIndex.

Quick start

Install the integration with:

pip install llama-index-vector-stores-azurecosmosnosql

Create the CosmosDB client:

URI = "AZURE_COSMOSDB_URI"
KEY = "AZURE_COSMOSDB_KEY"
client = CosmosClient(URI, credential=KEY)

Specify the vector store properties:

indexing_policy = {
    "indexingMode": "consistent",
    "includedPaths": [{"path": "/*"}],
    "excludedPaths": [{"path": '/"_etag"/?'}],
    "vectorIndexes": [{"path": "/embedding", "type": "quantizedFlat"}],
}

vector_embedding_policy = {
    "vectorEmbeddings": [
        {
            "path": "/embedding",
            "dataType": "float32",
            "distanceFunction": "cosine",
            "dimensions": 3072,
        }
    ]
}

Create the vector store:

store = AzureCosmosDBNoSqlVectorSearch(
    cosmos_client=client,
    vector_embedding_policy=vector_embedding_policy,
    indexing_policy=indexing_policy,
    cosmos_container_properties={"partition_key": PartitionKey(path="/id")},
    cosmos_database_properties={},
    create_container=True,
)

Finally, create the index from a list containing documents:

storage_context = StorageContext.from_defaults(vector_store=store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_vector_stores_azurecosmosnosql-1.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_vector_stores_azurecosmosnosql-1.2.0.tar.gz
Algorithm Hash digest
SHA256 05e9ad56b5f18b68222f6b6cc78b510866b56ad225171fb4b271416aa496409c
MD5 9f1a7966563b13d5ba8e5adebc6bcd7d
BLAKE2b-256 529956335ccc8093c1130f006c78ad4f3c7812e19cb0451cbb2546bc81bd1a24

See more details on using hashes here.

File details

Details for the file llama_index_vector_stores_azurecosmosnosql-1.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_vector_stores_azurecosmosnosql-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e3b9811ce14297db4553125d623eb348cc9881b7bf04a16d3ba5820db19c020
MD5 5a713c3d209f9b44e5e00fc1200c1d35
BLAKE2b-256 37d3f785902b7ecbf720f9245a14abceb6d9e5e2b4fc0c2cdbb61a704732bd37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page