Interface between LLMs and your data
Project description
Llama-index with InterSystems IRIS
Llama-index with support for InterSystems IRIS
Install
pip install llama-iris
Example
import os
from dotenv import load_dotenv
from llama_index import SimpleDirectoryReader, StorageContext, ServiceContext
from llama_index.indices.vector_store import VectorStoreIndex
import openai
from llama_iris import IRISVectorStore
load_dotenv(override=True)
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
vector_store = IRISVectorStore.from_params(
connection_string=CONNECTION_STRING,
table_name="paul_graham_essay",
embed_dim=1536, # openai embedding dimension
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
show_progress=True,
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do?")
import textwrap
print(textwrap.fill(str(response), 100))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
llama_iris-0.3.1b5.tar.gz
(5.0 kB
view hashes)
Built Distribution
Close
Hashes for llama_iris-0.3.1b5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4ab8e7f467e9957d93245820912bb96e5a2952eeba1c43fa0c57df8369b2322 |
|
MD5 | e77e0570e83016f153e818fb7d3b36a1 |
|
BLAKE2b-256 | 390d20ef814ccc08e2598b2c5ed5dacde1a709ead535717d91a32daa2973e022 |