Skip to main content

Unofficial python bindings for llama-rs. 🐍❤️🦀

Project description

llama-rs-python

Unofficial python bindings for llama-rs created with PyO3. 🐍❤️🦀

This package gives access to the basic functionality of the llama-rs project.

GGML converted models can be loaded and executed.

Installation

Simply install it via pip: pip install llama-rs-python

Usage

The package is typehinted for easy usage.

A usage example could look like this:

from llama_rs_python import Model

#load the model
model = Model("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

The package also supports callbacks to get each token as it is generated. The callback-function also supports canceling the generation by returning a True value from the pytohn side.

from llama_rs_python import Model
import sys
from typing import Optional

#load the model
model = Model("path/to/model.bin")

#define the callback
def callback(token:str)->Optional[bool]:
    print(token,end="")
    sys.stdout.flush()
    # (return True here to cancel the generation)

#start generation
model.generate("The meaning of life is",callback=callback)

The configuration of the generation is handled by the GenerationConfig class.

from llama_rs_python import Model, GenerationConfig

#load the model
model = Model("path/to/model.bin")

#create a config
config = GenerationConfig(top_p=0.9,seed=1441,max_new_tokens=1024)

#generate
print(model.generate("The meaning of life is",generation_config=config))

To configure model specific settings the SessionConfig class can be used.

from llama_rs_python import Model, SessionConfig

#define the session
session_config = SessionConfig(threads=8,context_length=512)

#load the model
model = Model("path/to/model.bin",session_config=session_config)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_rs_python-0.0.2.tar.gz (12.8 kB view details)

Uploaded Source

Built Distributions

llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-cp311-none-win_amd64.whl (265.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

llama_rs_python-0.0.2-cp311-none-win32.whl (246.2 kB view details)

Uploaded CPython 3.11 Windows x86

llama_rs_python-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-cp311-cp311-macosx_11_0_arm64.whl (393.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llama_rs_python-0.0.2-cp311-cp311-macosx_10_7_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llama_rs_python-0.0.2-cp310-none-win_amd64.whl (265.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

llama_rs_python-0.0.2-cp310-none-win32.whl (246.2 kB view details)

Uploaded CPython 3.10 Windows x86

llama_rs_python-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-cp310-cp310-macosx_11_0_arm64.whl (393.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llama_rs_python-0.0.2-cp310-cp310-macosx_10_7_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llama_rs_python-0.0.2-cp39-none-win_amd64.whl (265.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

llama_rs_python-0.0.2-cp39-none-win32.whl (246.6 kB view details)

Uploaded CPython 3.9 Windows x86

llama_rs_python-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-cp38-none-win_amd64.whl (265.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

llama_rs_python-0.0.2-cp38-none-win32.whl (246.1 kB view details)

Uploaded CPython 3.8 Windows x86

llama_rs_python-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llama_rs_python-0.0.2-cp37-none-win_amd64.whl (265.4 kB view details)

Uploaded CPython 3.7 Windows x86-64

llama_rs_python-0.0.2-cp37-none-win32.whl (246.1 kB view details)

Uploaded CPython 3.7 Windows x86

llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llama_rs_python-0.0.2.tar.gz.

File metadata

  • Download URL: llama_rs_python-0.0.2.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llama_rs_python-0.0.2.tar.gz
Algorithm Hash digest
SHA256 41ef608ac6b928e82518b0960debc93d568b599b4da0773bdb6faf5f56ad304f
MD5 5ced8c0c5954c9b3f5f04edea07eeb6b
BLAKE2b-256 1670e52781d2b528f6949a203666a3ae22eb96a831853980505d4f547f3e8ea1

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b7f7867fd3972dad85e73de3e05e6ef19f216f50a76ab952ad63b97fe33f31d
MD5 be960cde9b61785f59f990281371e5ca
BLAKE2b-256 86451c485fbc57e1a52a1412c4e1b5c00bb3a4cafc9449f90942e44890099d80

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 cf819b3124051081744eb4847fc92f9b48c35b47cc947493eb252cd0cf2df586
MD5 9816952c8845268a8aed2e17b58c2eef
BLAKE2b-256 707d831ef5d4ae085cea88e24b2f0c54745d75493b0b6f1fedc5af9e6c60d040

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4121834e0b5ab8572dabf5fc1dcb07a200f2331fac497ca918de6abc177b15c
MD5 00966045f35f387b68ab2bf498ee0b39
BLAKE2b-256 6f635decc5a9e0264205688c284e761ff4531d0a308083aa012efe828cab0d23

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ba893892d106ccb068479b72756b3d2b0d34eb41f5cc7d596cae78efcbca2a71
MD5 10518b2542e3a9154deb7eb771382cb6
BLAKE2b-256 64c415c2639c8070b0f12d1f6757148760cdef80f092299ba3166dec9fb77b42

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c94dabc00b958429517788539dbf34839ff8f427650b3c79e39b1808153281ee
MD5 b8d47d297b5d0827cc682463d80970d4
BLAKE2b-256 682f02d64a5f9591d118c59ec8e435aad34e3477f1a7605f216e51d490427cde

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f409e07c01bc0f825b533759ef0eb7c351e7f30de9c73c99d132f206a161f399
MD5 767028ea8fea4d8cc5ed8b7e0188f86f
BLAKE2b-256 1d8fb81be56b5b2815bebc7859b05130d3da4c1bc9c257c0bac76a2660b8e9fa

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 e92dbcef8b293a48b7895b0e44b62fe3cdd88fa709c1b8f812fc26d872debe52
MD5 1d8ec67e62c503a237502884f04a82f3
BLAKE2b-256 8feb6043a39dca6030ff430f19325e4930a7bb794cf1032c4227056f45d954ba

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-none-win32.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 90c5803e705c02b579ad1e4e1737e8d4034ef908b362c17fe2cca0394abfdbf8
MD5 03f5a78fa4d804f31f20f4949a17b86f
BLAKE2b-256 ae606bab1b32a68c748ae81ce3c4e2319de02e9e6ccd31b0e60642a9214a2db5

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60a9cea2591f8babb96174243e3827505842bc9cfdcbc72d0abd9a79e0cb62de
MD5 9116834c8138d9053e965185d81a9662
BLAKE2b-256 199cac04eec3082c7c5201f43d020a247234f95a2cff814ce4109e709f8e7b39

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 128322681699272c8ec0ff2c95d535d17a459b19aaaddbafc39b33eaf52e8ccf
MD5 171f46b2d1d275f8d79b72f5164ee73c
BLAKE2b-256 874f30898cb67c89bb1c286662e00f3571148b8d5db121667306d81acf61fae7

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 313e9ec96766e2bc8a9a479729544218533690ccbf8eab2b413cc67c562b8fb4
MD5 b568095d1b5d67c3d28772f3cf08d84b
BLAKE2b-256 ffc32447c6a760bde01d1b430d5854fe31ae86719c6687e49659626bc7c1de57

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0bdefab4dbba2b00e174b568b671c1b208225c2384038cb7def6c017978b801d
MD5 b336208bd851430ca597e6720124fc2f
BLAKE2b-256 80d4469d7af8dd7301af9984df0311628b9cee90a523fd5afe7ac649e5f33d07

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a9207f57fe7a6bb9e23d3d70f75ff671867e2c101494412954b5b40fa4d3723a
MD5 5b5dd52c93609dd0a80cc2ea8037d4c9
BLAKE2b-256 8b423d370d979416f6d96f3269e47c05f0ae9842b3ab720b92669eff202ffe56

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-none-win32.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 50bb4ee58b2dc938a34f45e4e69dd1c753fc624f9532d7c0e270c00b6dce604d
MD5 3ebd07b9cb33dd29e9b7190756b1f718
BLAKE2b-256 35e21a97e168b3312ddf250fafece3465ba301f8e1b31de6995ac3a2f89136cf

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 917dc5131e620d04db562a686e4969f4306d023973e11ab1a9066ddfb7623b35
MD5 da47fe048d20c8ec03d9ed4c96a4993e
BLAKE2b-256 dc32826c0cfc2d1547feb2a9d5307b22511b17c52e8fdabe851ebd6d7207a574

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 de8658baa39f8ff3065030ad83d2ac2fc595b317ae85cb0240c03539bc91b2c7
MD5 98a6bf07759716f1bff7a9e1f399bd51
BLAKE2b-256 78363d37e04d6f439249e92a8ffbc579c76316d39778a0ab3dcdfdcf12163871

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 335db0818ce6ce9c2beb21d3813f95f7c204c74f78e516b6fb28dbd746fa5f57
MD5 c5f197a2a8f7a9dec394017f01398641
BLAKE2b-256 a509cf02e577286f402ad445d14c079384230842c0222d22a7e225f9b948db23

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2e0baf2aee0e0d237bf6118cc5af125a791f74e50c3e54ade3a2f11af1c53ee1
MD5 88efa2f4a4509edbd841c55cc5686b71
BLAKE2b-256 9a1eb33f82f44266afa5f54322c4d8b2cc40c296914e4497efa133dbc05aed51

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5056b61a8edf79af0443dc16451fcb10b93c27cc164168120feb14c6cd49f2ec
MD5 5120e918b1930ad8cd4ec06be835099d
BLAKE2b-256 3686445a05d13ccaac4da5b2d217cd4c86b42201cdbd78878317b3942800e064

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp39-none-win32.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 9e818911b90b343a966c0f316307878432601dcfd8c7abfe95e71ba0bba6bd97
MD5 c15e83a5bd99e865c1a98a406495a9f5
BLAKE2b-256 ad89d399d900b4e80609e0271c4f592bfa5df86b5e436d1b4c6edda2a8831295

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7fb29e971139dc0ff140e6783629bc4897ca5edf00acd7ccc9f464fba799e090
MD5 c26d9da7c86bc29ae9e1afc559add0f6
BLAKE2b-256 ae9315c48052f15b91b41f635fb85a7510ff31eca129589c7476070f8c22e18e

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 660aba80e6a9f0edc4f43498438abc3a988c8458c3626f7df32a7a7ecc2d1700
MD5 f82ac66e7a36ffb740f30d41726e0c67
BLAKE2b-256 41dd516af383f2d5314fb4ba273703093df08937590c0c4b7f6dd1b80dfe0aa8

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ae164b1aa07ad94e1f433da3f9b650e34b5f33fa635e082773ed17bbf8fc0b2
MD5 ef5f19506b0bb8ac5bd6a424ab07d8b0
BLAKE2b-256 188521c3e3fc76d7a12a01b7d11c18da073373dbcfdf44d5ee09af4d275f3256

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp38-none-win32.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 73267b4429a4e1ec9c1645ac70cf781c023418cbb96cbd68c2350e485e3602ca
MD5 872a3693c97ac8c0698b8f6f597a856c
BLAKE2b-256 1ac370bbd7bb350c5138d6c5fdd73c26caecd17b68de007f2a19271534ab41ac

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 876629a4e3528954e4dc37ef3e0c4607c131c6f78aeabf351e46c8123f87c88e
MD5 9f778307f3b8d2348ff140b07bbfb465
BLAKE2b-256 ddbaf8b2a742a76c696ea22aaaea55719cecac69a7db2726b410b220fc69429a

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 31433f0739882205e54be4f409e75d23292e91532f4cb681ef27cf38b7e9d2da
MD5 306415aba6c988917681b982a9966928
BLAKE2b-256 d7f6bffb18218ae596d4b53576b1bb1b2432a15488e51da6ae24ca2935523988

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f76ba08a1f26ec80693f8587a3137256e6aa53f55e780d14cf7d9be0b3a7f392
MD5 00391e9359ab1297c8c444c785a761da
BLAKE2b-256 6ef7e0cb7d34fa890cc0ac39e138f3bd2b9b7a7b2c7a858769fd023c33339427

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp37-none-win32.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ad8de6dba4cdcaef5af3cbc9f4cfcd6558ec533617d43985b443818a1b67f48e
MD5 a7233c1e57cde2fa248d8116813a4eb2
BLAKE2b-256 515593372cfe8d5fdfcb18d4c02bc0ee907a0e8696c8d672bd5210c2b1ab8963

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7844ce51d73bd1eec58875bf306b5726c77cea3d66bc359fc618893db7b1ce1
MD5 f6830e250d12deb62bf5362afcf5fa8f
BLAKE2b-256 da5bc62ddb14856519b4a93520f5e724405bd827a47b78f686ff8804e5e732bf

See more details on using hashes here.

File details

Details for the file llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llama_rs_python-0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 46d62b4a224626d8cc499826bd87f3a8713ef9aa412c060770c68da0a8793c8d
MD5 a7cd71486c6a76e856eefa565c3df09a
BLAKE2b-256 0db736299e0ba41b7f9a64d363c1ded3e1a86ee024473454b1c81084ca022f63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page