Skip to main content

SDK for using LLM

Project description

LLM-Client-SDK

Test License: MIT

LLM-Client-SDK is an SDK for seamless integration with generative AI large language models (We currently support - OpenAI, Google, AI21, HuggingfaceHub, Aleph Alpha, Anthropic, Local models with transformers - and many more soon).

Our vision is to provide async native and production ready SDK while creating a powerful and fast integration with different LLM without letting the user lose any flexibility (API params, endpoints etc.). *We also provide sync version, see more details below in Usage section.

Base Interface

The package exposes two simple interfaces for communicating with LLMs (In the future, we will expand the interface to support more tasks like list models, edits, etc.):

from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Optional
from aiohttp import ClientSession


class BaseLLMClient(ABC):
    @abstractmethod
    async def text_completion(self, prompt: str, **kwargs) -> list[str]:
        raise NotImplementedError()

    async def get_tokens_count(self, text: str, **kwargs) -> int:
        raise NotImplementedError()



@dataclass
class LLMAPIClientConfig:
    api_key: str
    session: ClientSession
    base_url: Optional[str] = None
    default_model: Optional[str] = None
    headers: dict[str, Any] = field(default_factory=dict)


class BaseLLMAPIClient(BaseLLMClient, ABC):
    def __init__(self, config: LLMAPIClientConfig):
        ...

    @abstractmethod
    async def text_completion(self, prompt: str, model: Optional[str] = None, max_tokens: int | None = None,
                              temperature: Optional[float] = None, top_p: Optional[float] = None, **kwargs) -> list[str]:
        raise NotImplementedError()

    async def embedding(self, text: str, model: Optional[str] = None, **kwargs) -> list[float]:
        raise NotImplementedError()

Requirements

Python 3.9+

Installation

If you are worried about the size of the package you can install only the clients you need, by default we install none of the clients.

For all current clients support

$ pip install llm-client[all]

For only the base interface and some light LLMs clients (AI21 and Aleph Alpha)

$ pip install llm-client

Optional Dependencies

For all current api clients support

$ pip install llm-client[api]

For only local client support

$ pip install llm-client[local]

For sync support

$ pip install llm-client[sync]

For only OpenAI support

$ pip install llm-client[openai]

For only HuggingFace support

$ pip install llm-client[huggingface]

Usage

Using OpenAI directly through OpenAIClient - Maximum control and best practice in production

import os
from aiohttp import ClientSession
from llm_client import ChatMessage, Role, OpenAIClient, LLMAPIClientConfig

OPENAI_API_KEY = os.environ["API_KEY"]
OPENAI_ORG_ID = os.getenv("ORG_ID")


async def main():
    async with ClientSession() as session:
        llm_client = OpenAIClient(LLMAPIClientConfig(OPENAI_API_KEY, session, default_model="text-davinci-003",
                                                     headers={"OpenAI-Organization": OPENAI_ORG_ID}))  # The headers are optional
        text = "This is indeed a test"

        print("number of tokens:", await llm_client.get_tokens_count(text))  # 5
        print("generated chat:", await llm_client.chat_completion(  
            messages=[ChatMessage(role=Role.USER, content="Hello!")], model="gpt-3.5-turbo"))  # ['Hi there! How can I assist you today?']
        print("generated text:", await llm_client.text_completion(text))  # [' string\n\nYes, this is a test string. Test strings are used to']
        print("generated embedding:", await llm_client.embedding(text))  # [0.0023064255, -0.009327292, ...]

Using LLMAPIClientFactory - Perfect if you want to move fast and to not handle the client session yourself

import os
from llm_client import LLMAPIClientFactory, LLMAPIClientType

OPENAI_API_KEY = os.environ["API_KEY"]


async def main():
    async with LLMAPIClientFactory() as llm_api_client_factory:
        llm_client = llm_api_client_factory.get_llm_api_client(LLMAPIClientType.OPEN_AI,
                                                               api_key=OPENAI_API_KEY,
                                                               default_model="text-davinci-003")

        await llm_client.text_completion(prompt="This is indeed a test")
        await llm_client.text_completion(prompt="This is indeed a test", max_tokens=50)

        
# Or if you don't want to use async
from llm_client import init_sync_llm_api_client

llm_client = init_sync_llm_api_client(LLMAPIClientType.OPEN_AI, api_key=OPENAI_API_KEY,
                                      default_model="text-davinci-003")

llm_client.text_completion(prompt="This is indeed a test")
llm_client.text_completion(prompt="This is indeed a test", max_tokens=50)

Local model

import os
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from llm_client import LocalClientConfig, LocalClient

async def main():
    try:
        model = AutoModelForCausalLM.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
    except ValueError:
        model = AutoModelForSeq2SeqLM.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
    tokenizer = AutoTokenizer.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
    llm_client = LocalClient(LocalClientConfig(model, tokenizer, os.environ["TENSORS_TYPE"], os.environ["DEVICE"]))

    await llm_client.text_completion(prompt="This is indeed a test")
    await llm_client.text_completion(prompt="This is indeed a test", max_tokens=50)


# Or if you don't want to use async
import async_to_sync

try:
    model = AutoModelForCausalLM.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
except ValueError:
    model = AutoModelForSeq2SeqLM.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
tokenizer = AutoTokenizer.from_pretrained(os.environ["MODEL_NAME_OR_PATH"])
llm_client = LocalClient(LocalClientConfig(model, tokenizer, os.environ["TENSORS_TYPE"], os.environ["DEVICE"]))

llm_client = async_to_sync.methods(llm_client)

llm_client.text_completion(prompt="This is indeed a test")
llm_client.text_completion(prompt="This is indeed a test", max_tokens=50)

Contributing

Contributions are welcome! Please check out the todos below, and feel free to open issue or a pull request.

Todo

The list is unordered

  • Add support for more LLMs
    • Anthropic
    • Google
    • Cohere
  • Add support for more functions via LLMs
    • embeddings
    • chat
    • list models
    • edits
    • more
  • Add contributing guidelines and linter
  • Create an easy way to run multiple LLMs in parallel with the same prompts
  • Convert common models parameter
    • temperature
    • max_tokens
    • top_p
    • more

Development

To install the package in development mode, run the following command:

$ pip install -e ".[all,test]"

To run the tests, run the following command:

$ pytest tests

If you want to add a new LLMClient you need to implement BaseLLMClient or BaseLLMAPIClient.

If you are adding a BaseLLMAPIClient you also need to add him in LLMAPIClientFactory.

You can add dependencies to your LLMClient in pyproject.toml also make sure you are adding a matrix.flavor in test.yml.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_client-0.7.0.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

llm_client-0.7.0-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file llm_client-0.7.0.tar.gz.

File metadata

  • Download URL: llm_client-0.7.0.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for llm_client-0.7.0.tar.gz
Algorithm Hash digest
SHA256 68fb98a3a68b08a0150c3d8ae476b083b06574334423dc1d0df0949c2a0e8f73
MD5 dd1b8819f04c48193526a0f6504d4fae
BLAKE2b-256 9f508d70f665b21ccd9ed540cb85d23558817766cbedb5b4688dfe2f663c13aa

See more details on using hashes here.

File details

Details for the file llm_client-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: llm_client-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for llm_client-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 58691a8d41873f39bccafda394d9a62c61ae8a75d7931d10f87aeac8f9b3492f
MD5 3e857e23a9c842249bf04bdbef4d5080
BLAKE2b-256 a7e96c510838db9d987830b27810a2afef8670f772422ac513cc05db469c4fb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page