Skip to main content

A Python package for managing LLM chat conversation history

Project description

LLM Dialog Manager

A Python package for managing AI chat conversation history with support for multiple LLM providers (OpenAI, Anthropic, Google, X.AI) and convenient conversation management features.

Features

  • Support for multiple AI providers:
    • OpenAI (GPT-3.5, GPT-4)
    • Anthropic (Claude)
    • Google (Gemini)
    • X.AI (Grok)
  • Intelligent message role management (system, user, assistant)
  • Conversation history tracking and validation
  • Load balancing across multiple API keys
  • Error handling and retry mechanisms
  • Conversation saving and loading
  • Memory management options
  • Conversation search and indexing
  • Rich conversation display options

Installation

pip install llm-dialog-manager

Quick Start

Basic Usage

from llm_dialog_manager import ChatHistory

# Initialize with a system message
history = ChatHistory("You are a helpful assistant")

# Add messages
history.add_user_message("Hello!")
history.add_assistant_message("Hi there! How can I help you today?")

# Print conversation
print(history)

Using the AI Agent

from llm_dialog_manager import Agent

# Initialize an agent with a specific model
agent = Agent("claude-2.1", memory_enabled=True)

# Add messages and generate responses
agent.add_message("system", "You are a helpful assistant")
agent.add_message("user", "What is the capital of France?")
response = agent.generate_response()

# Save conversation
agent.save_conversation()

Advanced Features

Managing Multiple API Keys

from llm_dialog_manager import Agent

# Use specific API key
agent = Agent("gpt-4", api_key="your-api-key")

# Or use environment variables
# OPENAI_API_KEY_1=key1
# OPENAI_API_KEY_2=key2
# The system will automatically handle load balancing

Conversation Management

from llm_dialog_manager import ChatHistory

history = ChatHistory()

# Add messages with role validation
history.add_message("Hello system", "system")
history.add_message("Hello user", "user")
history.add_message("Hello assistant", "assistant")

# Search conversations
results = history.search_for_keyword("hello")

# Get conversation status
status = history.conversation_status()
history.display_conversation_status()

# Get conversation snippets
snippet = history.get_conversation_snippet(1)
history.display_snippet(1)

Environment Variables

Create a .env file in your project root:

# OpenAI
OPENAI_API_KEY_1=your-key-1
OPENAI_API_BASE_1=https://api.openai.com/v1

# Anthropic
ANTHROPIC_API_KEY_1=your-anthropic-key
ANTHROPIC_API_BASE_1=https://api.anthropic.com

# Google
GEMINI_API_KEY=your-gemini-key

# X.AI
XAI_API_KEY=your-x-key

Development

Running Tests

pytest tests/

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support, please open an issue in the GitHub repository or contact the maintainers.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_dialog_manager-0.1.1449.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

llm_dialog_manager-0.1.1449-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file llm_dialog_manager-0.1.1449.tar.gz.

File metadata

  • Download URL: llm_dialog_manager-0.1.1449.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for llm_dialog_manager-0.1.1449.tar.gz
Algorithm Hash digest
SHA256 7a5952fc4ab4630cfc082f94ece488fa7e37d76a83d2f0c6f1102fd952f19bde
MD5 2153937d674ea31d2c05647873df6b92
BLAKE2b-256 ffb29ff8e2436c740b991b9675f490b751361ea12eb3bc8ed52b029546e3078b

See more details on using hashes here.

File details

Details for the file llm_dialog_manager-0.1.1449-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_dialog_manager-0.1.1449-py3-none-any.whl
Algorithm Hash digest
SHA256 424622dfbd2ed3cd16cfed3c6c2c91d3eb94093792f1d7a630d12d8566145a36
MD5 8e4325e93f0a1246694c0ddf1175e983
BLAKE2b-256 78fdcf1809f3f9c2879c8bea92912b80dbac528e45698cee04719ecde2dc8b90

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page