Skip to main content

LLM plugin to generate few-shot prompts for plugin creation

Project description

llm-plugin-generator

PyPI Changelog Tests License

LLM plugin to generate plugins for LLM

Installation

Install this plugin in the same environment as LLM:

llm install llm-plugin-generator

Usage

To generate a new LLM plugin, use the generate-plugin command:

llm generate-plugin "Description of your plugin"

Options:

  • PROMPT: Description of your plugin (optional)
  • INPUT_FILES: Path(s) to input README or prompt file(s) (optional, multiple allowed)
  • --output-dir: Directory to save generated plugin files (default: current directory)
  • --type: Type of plugin to generate (default, model, or utility)
  • --model, -m: Model to use for generation

--type

--type model will use a few-shot prompt focused on llm model plugins. --type utility focuses on utilities. leaving off --type will use a default prompt that combines all off them. I suggest picking one of the focused options which should be faster.

Examples:

  1. Basic usage:
llm generate-plugin "Create a plugin that translates text to emoji" --output-dir ./my-new-plugin --type utility --model gpt-4
  1. Using a prompt and input files - Generating plugin from a README.md
llm generate-plugin "Few-shot Prompt Generator. Call it llm-few-shot-generator" \
'files/README.md' --output-dir plugins/Utilities/few-shot-generator \
--type utility -m claude-3.5-sonnet
  1. Using websites or remote files:
llm generate-plugin "Write an llm-cerebras plugin from these docs: $(curl -s https://raw.githubusercontent.com/irthomasthomas/llm-cerebras/refs/heads/main/.artefacts/cerebras-api-notes.txt)" \
--output-dir llm-cerebras  --type model -m sonnet-3.5 

This will generate a new LLM plugin based on the provided description and/or input files. The files will be saved in the specified output directory.

Features

  • Generates fully functional LLM plugins based on descriptions or input files
  • Supports different plugin types: default, model, and utility
  • Uses few-shot learning with predefined examples for better generation
  • Allows specifying custom output directory
  • Compatible with various LLM models
  • Generates main plugin file, README.md, and pyproject.toml
  • Extracts plugin name from generated pyproject.toml for consistent naming

Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:

cd llm-plugin-generator
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest

Contributing

Contributions to llm-plugin-generator are welcome! Please refer to the GitHub repository for more information on how to contribute.

License

This project is licensed under the Apache License 2.0. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_plugin_generator-0.5.tar.gz (32.6 kB view details)

Uploaded Source

Built Distribution

llm_plugin_generator-0.5-py3-none-any.whl (35.5 kB view details)

Uploaded Python 3

File details

Details for the file llm_plugin_generator-0.5.tar.gz.

File metadata

  • Download URL: llm_plugin_generator-0.5.tar.gz
  • Upload date:
  • Size: 32.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for llm_plugin_generator-0.5.tar.gz
Algorithm Hash digest
SHA256 36069b3df709780956cb71d50d378ccef0dd446a3da1c431d3e86185d0e00ab7
MD5 99d5baa409f7d07836c2c1676b84a987
BLAKE2b-256 8ae414ecbdaf4f56419517fd66f5625c267d4e73e91588cc9936609b0b3e168a

See more details on using hashes here.

File details

Details for the file llm_plugin_generator-0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_plugin_generator-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 60164fee022b64db2f3960d72a7a42febd0afc5d10d7a02f1436717e29bba7b2
MD5 a06626e98124803c567460771fb231f1
BLAKE2b-256 05ef004a8db3d587fd1f14b4ee8ed632ad66040f9e25c957149ca1301e6bc2ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page