Skip to main content

Это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG).

Project description

rag_builder

rag_builder — это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG). Библиотека интегрируется с различными языковыми моделями и предоставляет удобный интерфейс для создания, запроса и управления диалоговыми системами.

Возможности

  • Управление командами: Легко добавляйте и управляйте командами для вашей диалоговой системы.
  • Интеграция с LLM: Используйте различные языковые модели для генерации текста.
  • Интеграция с Vector DB: Используйте различные базы данных векторов для поиска похожих запросов.
  • Интеграция с Vectorizers: Используйте различные инструменты для преобразования текста в векторное представление.

Интеграции

Модели Минимальная интеграция Оптимизированная интеграция Полностью интегрировано
LLMs:
OpenAI models
Yandex models
Gemini models
Vector DB:
Chroma
pgvector
Vectorizers:
OpenAI embeddings
Yandex embeddings

Установка

Для установки rag_builder можно использовать pip:

# Без интеграций
pip install rag_builder

# Все интеграции
pip install all  

# Интеграции по отдельности
pip install rag_builder[openai]
pip install rag_builder[yandex]
pip install rag_builder[gemini]
pip install rag_builder[chroma]
pip install rag_builder[pgvector]

Использование

Базовая настройка

Пример настройки базовой диалоговой системы с использованием rag_builder:

from rag_builder import BaseDialog, BaseCommand, YandexLLM, GeminiLLM

# Инициализация LLM
llm = GeminiLLM(
    db=vdb,
    vectorizer=vectorizer,
    api_key="YOUR_API_KEY",
    llm_model="gemini-1.5-flash",
)

# Создание экземпляра диалога
dialog = BaseDialog(
    llm=llm,
    title='OpenAI Dialog'
)

# Определение команд
get_time_func = BaseCommand(
    name='get_time',
    description='Получить текущее время.',
    examples=['get_time()'],
    run=lambda args: f"Текущее время 12:00",
)

get_weather_func = BaseCommand(
    name='get_weather',
    description='Получить текущую погоду.',
    examples=['get_weather()'],
    run=lambda args: f"Текущая погода солнечная",
)

# Добавление команд в диалог
dialog.add_command(get_time_func)
dialog.add_command(get_weather_func)

# Обработка сообщения пользователя
dialog.proccess_user_message('Какая погода?')

Вывод:

USER: Какая погода?
ASSISTANT: <RUNFUNC> get_weather() </RUNFUNC>
SYSTEM: Текущая погода солнечная
ASSISTANT: Текущая погода солнечная

Больше примеров использования можно найти в папке examples.

Вклад

Ваши идеи и вклад приветствуются! Пожалуйста, отправляйте запросы на добавление изменений (pull requests) или открывайте issue для обсуждения ваших идей.

Лицензия

Этот проект распространяется под лицензией MIT. Подробности можно найти в файле LICENSE.

Контакты

По любым вопросам и запросам обращайтесь на pzrnqt1vrss@protonmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rag_builder-0.1.0.tar.gz (16.3 kB view details)

Uploaded Source

Built Distribution

llm_rag_builder-0.1.0-py3-none-any.whl (20.5 kB view details)

Uploaded Python 3

File details

Details for the file llm_rag_builder-0.1.0.tar.gz.

File metadata

  • Download URL: llm_rag_builder-0.1.0.tar.gz
  • Upload date:
  • Size: 16.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for llm_rag_builder-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c30197ad5cbcf9a50c46403adadbc4ea370f669fd116ee7c28895b813098a3c2
MD5 29538a25fa095363e3543bfc6ecfeb28
BLAKE2b-256 c8c5d6ed3a528149c7836c4ac448ff3d86979f7c804619cb9158b583de9b6c58

See more details on using hashes here.

File details

Details for the file llm_rag_builder-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_rag_builder-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 24c031d09a64b79fa14a4fa8a070eb39e24760d5f649c4ad5a55b6a00af0eea6
MD5 5c03f1ac5be77596cddbae63715b2c8d
BLAKE2b-256 835a4814693fcb153d0e019323e0f1e4cf4c7328eaaa84c8f43634dafcb626e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page