Skip to main content

Это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG).

Project description

rag_builder

rag_builder — это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG). Библиотека интегрируется с различными языковыми моделями и предоставляет удобный интерфейс для создания, запроса и управления диалоговыми системами.

Возможности

  • Управление командами: Легко добавляйте и управляйте командами для вашей диалоговой системы.
  • Интеграция с LLM: Используйте различные языковые модели для генерации текста.
  • Интеграция с Vector DB: Используйте различные базы данных векторов для поиска похожих запросов.
  • Интеграция с Vectorizers: Используйте различные инструменты для преобразования текста в векторное представление.

Интеграции

Модели Минимальная интеграция Оптимизированная интеграция Полностью интегрировано
LLMs:
OpenAI models
Yandex models
Gemini models
Vector DB:
Chroma
pgvector
Vectorizers:
OpenAI embeddings
Yandex embeddings

Установка

Для установки rag_builder можно использовать pip:

# Без интеграций
pip install llm-rag-builder

# Все интеграции
pip install "llm-rag-builder[all]"  

# Интеграции по отдельности
pip install "llm-rag-builder[openai]"
pip install "llm-rag-builder[yandex]"
pip install "llm-rag-builder[gemini]"
pip install "llm-rag-builder[chroma]"
pip install "llm-rag-builder[pgvector]"

Использование

Базовая настройка

Пример настройки базовой диалоговой системы с использованием rag_builder:

from rag_builder import BaseDialog, BaseCommand, YandexLLM, GeminiLLM

# Инициализация LLM
llm = GeminiLLM(
    db=vdb,
    vectorizer=vectorizer,
    api_key="YOUR_API_KEY",
    llm_model="gemini-1.5-flash",
)

# Создание экземпляра диалога
dialog = BaseDialog(
    llm=llm,
    title='OpenAI Dialog'
)

# Определение команд
get_time_func = BaseCommand(
    name='get_time',
    description='Получить текущее время.',
    examples=['get_time()'],
    run=lambda args: f"Текущее время 12:00",
)

get_weather_func = BaseCommand(
    name='get_weather',
    description='Получить текущую погоду.',
    examples=['get_weather()'],
    run=lambda args: f"Текущая погода солнечная",
)

# Добавление команд в диалог
dialog.add_command(get_time_func)
dialog.add_command(get_weather_func)

# Обработка сообщения пользователя
dialog.proccess_user_message('Какая погода?')

Вывод:

USER: Какая погода?
ASSISTANT: <RUNFUNC> get_weather() </RUNFUNC>
SYSTEM: Текущая погода солнечная
ASSISTANT: Текущая погода солнечная

Больше примеров использования можно найти в папке examples.

Вклад

Ваши идеи и вклад приветствуются! Пожалуйста, отправляйте запросы на добавление изменений (pull requests) или открывайте issue для обсуждения ваших идей.

Лицензия

Этот проект распространяется под лицензией MIT. Подробности можно найти в файле LICENSE.

Контакты

По любым вопросам и запросам обращайтесь на pzrnqt1vrss@protonmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rag_builder-0.2.12.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

llm_rag_builder-0.2.12-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file llm_rag_builder-0.2.12.tar.gz.

File metadata

  • Download URL: llm_rag_builder-0.2.12.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for llm_rag_builder-0.2.12.tar.gz
Algorithm Hash digest
SHA256 729b8f633d6e8a788a878df2f97352385c17005238947283f58e343df033bae0
MD5 52edb20dd7df499e412d00332e56a4f8
BLAKE2b-256 b17d3ac0d06b6182e5584beacee7d57a8f265a1c5bc2335e62867cb34bb19430

See more details on using hashes here.

File details

Details for the file llm_rag_builder-0.2.12-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_rag_builder-0.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 7fca4aec9e12464dc1fdb3c710bcf21ab4caddd9c0846e68e2189d168156bbe8
MD5 a26f5e5fbd867ac13a7dae09664b4fa6
BLAKE2b-256 053b902e032ec12e1f091f09928ef72b6e3c714b51dd3b927e7f01160f3177aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page