Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

The package is type-hinted for easy usage.

A Llama model can be run like this:

from llm_rs import Llama

#load the model
model = Llama("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.0.tar.gz (19.8 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.0-cp311-none-win_amd64.whl (397.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.0-cp311-none-win32.whl (357.4 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.0-cp311-cp311-macosx_11_0_arm64.whl (530.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.0-cp311-cp311-macosx_10_7_x86_64.whl (569.2 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.0-cp310-none-win_amd64.whl (397.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.0-cp310-none-win32.whl (357.4 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (530.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.0-cp310-cp310-macosx_10_7_x86_64.whl (569.2 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.0-cp39-none-win_amd64.whl (398.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.0-cp39-none-win32.whl (357.7 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.0-cp38-none-win_amd64.whl (397.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.0-cp38-none-win32.whl (357.4 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.0-cp37-none-win_amd64.whl (397.8 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.0-cp37-none-win32.whl (357.5 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.0.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.0.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0.tar.gz
Algorithm Hash digest
SHA256 42342dea8a7104c2f79237b46c57620bc451bc304232df4aa2af580958275244
MD5 f051d481904098047fc6358fae6de948
BLAKE2b-256 c2170698df494db1e9164ff64ce2d68b614e4159142bbe253a74aa6772dbec2b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1a20bde52e3b1625802bd9389bb0c5bad8f4818bb8f4a0ae9195d055a2b970e
MD5 a9e7798c316e5403f59a1da102031149
BLAKE2b-256 0711f98a0cfed3cd81e5879633f11cfb5d39c87b25eaecc5fa296e8cde715dbe

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5ba839204efd06ca7fa50f67386b6f85a836ea8d23f08a2bd2f2ab0e7095649f
MD5 52f58db37868f0ff871741a472c04a87
BLAKE2b-256 74e988a0410f536c6fcf8b7a69f096b87f247f8e30779c7096be5c20a102cce0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 592ae40a941dcfad3eb4d344ab9c2bcb025d908eda909a5383fd2b22c907de0b
MD5 9317820d70e5ab95f6735d9b4ca8cd9b
BLAKE2b-256 63f3a3e5f727c69dc2719cf64b5eec85749f3e2734c18b76ea8d32ec5011dde1

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f8a353d4232aa109dcd5b231315a8fcbe1d69cffdf7c64f0822f3a46e247cdbb
MD5 927d7260a8aa122ea7f7317d676e5144
BLAKE2b-256 747f994a2dc43dda1bc8562df4c4c3c6a9bc33988673f57497c1953087b1cf95

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d48b83f38122ceeb7f48a30c1abfb3178c65ce1beb00d8c4b1581b05943f27a
MD5 ea19cd6920b4f7c67c3830051b56479f
BLAKE2b-256 6116b45aa4c6172fce7e51df09263efa0ca768147f3eec30b0cb59c5b6939e74

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd1c9bd59b04dc2592bfb0274b213df6d0830baed0fa1cbf99865b4a95f247a2
MD5 c8cdcd19fda5529f666d3806713a959b
BLAKE2b-256 2e9233e41d921f0379268d2ef307e2f0619ee32e95db8f67c9b9236a94b5ce44

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 397.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 74fdc73950cae06676bed98d22038c3edb5184bf4fa4115b71f39d0136a7ea99
MD5 8ab3030be54707a3f01e9732fd89a145
BLAKE2b-256 a9c6913312a6f0c7c1dae7908066c7182f55451469ae881d8fef662d5522abbe

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp311-none-win32.whl
  • Upload date:
  • Size: 357.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 42f5a3364621883538a646bdd5c7ec64262fd71a857428252e4cccc524fec731
MD5 fad3c81253b917a320bb10a11d3f5489
BLAKE2b-256 6c4514e2db40809adef5179bdb36e2ea1e2abbdca607ca0a54520417c7858fe0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1f4c223fd1435fc40193340510cea3ff87e4eb2f06e5a02914e4ed26a11eec0
MD5 7e184730104e4e0c45a6ff8763c2629c
BLAKE2b-256 ee3f14d61abdf691ea514a8a317b0b9ef6e50f2907df61fda20e6f9fe3715b38

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ce5d07076f45893b04d0d727c2ac14400c1f1799d92f4ce67d23d67d84ce5faa
MD5 2af0d3c30f2b16e70eba7caa1b72c556
BLAKE2b-256 797793f943518bac4afc789fa7a5ca0212f809d7f56ee64387d78502f339dcd1

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2865ab53983eebb7f2379eeb18f72112d48b92564a61413931ad4ddc922d4945
MD5 77105cadcb580efc669f4fd8fa00eb66
BLAKE2b-256 cead33ef57cf78b7265545af20615bba19b400ccb2977d06f0ef1ea5920997c2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0a631a0ab5632b1806c7c052f9e903f7ee8286fabaa3460829400ecd4d2d9613
MD5 01b5a55469655a50b4be98b39257df9f
BLAKE2b-256 04f958a9959036e6dc2e11fb210267d02c0aa5acce23499e030daf42c43f3e3a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 397.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a17949624309015b3fb69c56ddc97abb367d3feae085e64f8dce40e939da32ce
MD5 bd16b42b9d5059da9eba6263b7f25145
BLAKE2b-256 e01f820a1d4fe04a47e21631143697862fde612ad9b2f9c9139f8690f7c15403

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp310-none-win32.whl
  • Upload date:
  • Size: 357.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 5737578cf14c3fedae875bb2f72ae959d3f1291f56c79e1fbc64831605299744
MD5 1d92ff439415c21586682459e7e01fcd
BLAKE2b-256 a5cdbd0a3554acc496e21a175f54114d7d33510db2d04ff17874ee3a44decc35

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e288b1b8516497022e2cdfc9a82efb3729a0524739f554d650cf51af9937643
MD5 926c229da466fc88d495be6d87842ea6
BLAKE2b-256 0fd6055c10f156d3ac4725be61541499b68223626483f1e14352d5ee3575801e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c68ccf9171c5abee020cf9d6a3c4c8180c40e600eacb5729ba3fb3d5bcf2906e
MD5 b80dcf6534fe1ed7ecedfb5c23c8fe51
BLAKE2b-256 e332a3e2f83e8861b4d44dbefe9d9a70fc6e69cd78660ecdee434b77d4e574c0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae3edcf556421d500f7e7ad0f798f1407775ca3e50f2ad8ff7d53dce5e1c7917
MD5 656bcfc16ca5bddaab739eb2b9ab143c
BLAKE2b-256 d77e5ae2743c0b61958304e57d0a44dce1483b5e1d7d0aa5a6d724776bf05ef0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 55df38399be5bce17c31a94cab7559a783fb8b5deb793e63f6c8de5f169f2958
MD5 b219e46443e5f92f7e8d552456440e06
BLAKE2b-256 0657afa97376ae5a1baae7627c3d4c885a4d8d97793bfb9493f6c81168a05ec5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 398.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 980a12dfcde4e3ebcbb471f75afba5b058e116bb9635b7817be5d36e02b499a2
MD5 424ea5eda792bbe79b52d147e7060bcb
BLAKE2b-256 f255b4db36bbf969995b701352b1bf49fd059ac547082ce1f4e2e98e7748cc6d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp39-none-win32.whl
  • Upload date:
  • Size: 357.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 33294222f59dfaf362e720233acbd94b287874fd796e498c5f12980d21eb6e86
MD5 684c8c91f73b25e5ea1e69715ebbd04b
BLAKE2b-256 6289aceb1c8218d1028a310280d1a96aaa8245c3a001f0f2f854ede3a9d091f6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59c4c034da2061348efe99967e81cd595539fff6f2adf0e7f6b96715a614407e
MD5 0bef9a5c6b110a922c3d989c6044952e
BLAKE2b-256 ff8d6fe1b5e9ed73d7de0884c51c8dbcce93c33ffa321de0d01c25027e652d15

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0dfdd4819ed6c7188249b78391a2aecf9f5eadc2d3a52fc4ff18e98b54f92b28
MD5 218c4e53acf09a6c909b373d8023806c
BLAKE2b-256 c9d21ed7df67fb7e7c566c7400574cca810007f18838073b11dc0567366e8779

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 397.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 760992e99106ffab7a2ea6a2e1f9eaf9e0776dc0d25e4b17fb070d76057d6ee9
MD5 b89ee73d6d83509cf8604ac87da36789
BLAKE2b-256 e3732cc989682f9b58a69a9e73001402c3432aa73c9e44301bb0024428819894

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp38-none-win32.whl
  • Upload date:
  • Size: 357.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a6d9a5fccc72c458ea01292cd26c40db5cfbec6f45db8c67939c424ef7ed62d0
MD5 e49acf5b1d0eec2d055c3c612a0cad2b
BLAKE2b-256 5f0a6d1ac165f29efd059e694c0e6402b2e735a647f4b6e793f237f8e2582c05

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4baf25f785d31d54a7d4294ffa6d52abe79a92525b63be3ce28a14a9f1457211
MD5 fc5da7a25b33328016baf053fb7172ec
BLAKE2b-256 6a4c7777210d9a6a687a47e52fe3e971bed183b8a94db98ad4a672d630125b7d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4660a313efc6f966e6d61c0e1e198433d8e892d3d31ee1f118c660798e2253b5
MD5 b085c339c624e2ee1df2b055ce5bd33f
BLAKE2b-256 0c9602059c47341bc7f262e022e0ac4faf9220e493c70037d5c9928770dd8919

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 397.8 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 452599e4c06dc48abde477482cdd9545e633fe2a06ba3ed2b47a83662e70d6ee
MD5 75f06fec0366d8350ebda67d2fc529dd
BLAKE2b-256 565a068761298cb65fd92325d807ada45eff3afc862a7a56b92a7167efa2b308

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.0-cp37-none-win32.whl
  • Upload date:
  • Size: 357.5 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 1e4cd384c2d8ff508b80dd494e819f99ee786def5356df6b961add03756efeea
MD5 4b971d1eb37d6fdd7b96cf9000b930e1
BLAKE2b-256 2cba27d949bd0db22e9fa586f94d30b5df7fff894f7aed6975413aaf3951c91d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2afce97f310f2605594167d9146c4c1dc040e58b8697a07b5fdcf6104f2075f
MD5 2f8e5c7b2704caf138e6f9f595c3b022
BLAKE2b-256 75bc5254fd02a9c6c5b9954543d3e1afc127e533856d36e26929cf29fd24356c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9b357042cfc036c21578ba934f87d74ad1af1769170a88231ecc170a29fbe29
MD5 036bd77f7800cd5dfb66337d044f1340
BLAKE2b-256 1ba780a11f8668c0724b0e490fc5d80094bb9b0dd9f859ee8b11896009da4bc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page