Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

The package is type-hinted for easy usage.

A Llama model can be run like this:

from llm_rs import Llama

#load the model
model = Llama("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.1.tar.gz (21.9 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.1-cp311-none-win_amd64.whl (434.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.1-cp311-none-win32.whl (389.7 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.1-cp311-cp311-macosx_11_0_arm64.whl (577.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.1-cp311-cp311-macosx_10_7_x86_64.whl (615.1 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.1-cp310-none-win_amd64.whl (434.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.1-cp310-none-win32.whl (389.7 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (577.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.1-cp310-cp310-macosx_10_7_x86_64.whl (615.1 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.1-cp39-none-win_amd64.whl (435.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.1-cp39-none-win32.whl (389.9 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.1-cp38-none-win_amd64.whl (434.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.1-cp38-none-win32.whl (389.8 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.1-cp37-none-win_amd64.whl (434.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.1-cp37-none-win32.whl (389.8 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.1.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.1.tar.gz
  • Upload date:
  • Size: 21.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1.tar.gz
Algorithm Hash digest
SHA256 1a842630b374938df08699be62e6d4747e85c14f85de9c2bf464a2364b0522c2
MD5 584657723d87d4debcc99eef43dfd403
BLAKE2b-256 c95f139f93dc359a17fe8f222351839384f4168e94847c29a35d49dd87a825bd

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0379e5bcd66c2929d544410ec3aebd4bff78d1aa664838602e71d6492d0ed80
MD5 d1abbd70316a6e8dc3064feb68a03b26
BLAKE2b-256 0cf600eaf25a17f11b5505ac9245f62b0625e9e4b663ef6d3a87989a507c0be5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b615dcf9bcb12d8db6d99ca9f6fef386c281e47f09dcbd06b586cccafbf4529d
MD5 ee168c5e9e2eded72a05a2bdf91b8589
BLAKE2b-256 5d351d8fd767dd370296a1263ee4d2b2c8d09fce1d2aa77fd4367d015b9ac529

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f661fbf823bdde6f1699635552f01395d7d3ffa14a93a429cdb65b48e927e824
MD5 f91e032b9a158c95debe137e6115c8c1
BLAKE2b-256 35e9692c168e826ee2cadf600c12ad6d9b52a9ae5c818e182f15b6e9c9a62703

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d12aca936b63ec239fbc91ae40f4baed3743a1f6c0ae21c6d5835b1b018e9f62
MD5 dcd1a0d17630d94bc2b309bec3e46e29
BLAKE2b-256 233760e076548bcd63bad7eb66be576dd7a5026757c905de7fe2a49d02e374ba

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e752064764643895e6c7b5f463558602b9d5eeb0387e44ff5631d33203e60628
MD5 aa8aa6a91b85b6b45317e8ee0021b630
BLAKE2b-256 e2e7641b688463fe3069f4f016fd09fcf561d49d57648b44092e37e5992fc351

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d8e11c0fbdaf09e3d14e03afae6629bce94ae0af1e1f5a7177e1f4b6fc4016f6
MD5 0c8de55286a75e9cfa01d79cd96ca5fd
BLAKE2b-256 88470b84c0250f36a93a23d75ec3415b412352ff33a0846748f8ced803f0d791

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 434.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f4c8c3d27c6e0c3c83c25d39f26261e3e56050b0a91b40928c3b8b8518c7e447
MD5 e37b7e2a387be6d3e22be9fd1c99b82a
BLAKE2b-256 1ce1e59495a426f25dfeed3c2ff0452bc623e1c9c02e1bbde7366efee7f38f38

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp311-none-win32.whl
  • Upload date:
  • Size: 389.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 26fefc607e2218d0b259f2611082193fb436b3c48642cef2c4a1f2849d915ff8
MD5 9c90ba4cd94718f53c3fb3dad98b7332
BLAKE2b-256 d0d41902c6771deab42d72c747702d9490f0758958945ed1ea8dee296687741a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aa8004b72f028f40d5425bef69af2948dc8e9f15cbcf426cdc7558e0ac21cde
MD5 334c000d8f94a53f7e7974700ee6e182
BLAKE2b-256 d0bb08b21801b63ebeb170e9d7707da86011890e662651cddc308d46bb64ca0f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 28655672c09ac076e9677eadbde841b32aa1ce48b7d9b8cfe8e75edd6e5337f1
MD5 d5eb90ac816e956eae991d9d7916bf03
BLAKE2b-256 ed606e93fc79ab5cf5df5f28becc24f41ec5f21abb5d57f92d20f5c1127c2095

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 227f687f1d408c6e8362bad73363a894ca2311b1d9807d1e3494088674b45fd5
MD5 9a481f9c16bf0f9bcabe6cad9b361a90
BLAKE2b-256 5dd9462dfae691acacd2a7d61d31f3beaec9f2d32e1fef234022999dbad1791c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 68d0d74e4c503393adafc3697c4cdfae710f9a18c82534223c2ae2ad13d0cdcb
MD5 7eb533d7ae2217c58c49df09d18c46bc
BLAKE2b-256 4ebc0871386ccb9e417344dd83ee452d91e3d1802654455f73473eac7421f286

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 434.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5b46beb7680fecff71a68026fff3d0c7dbe21d5d82eecc483a8a248e39a181d1
MD5 dd31c8fbb7119b39c91b6a544603312d
BLAKE2b-256 f1089bd574d192e0ce5d1329e2d326b8016056c34d3882fe187a81605e2222b9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp310-none-win32.whl
  • Upload date:
  • Size: 389.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 0b4d367165fc85bc75e6801728aebf1c9ba9afd320f0be0a31726fbd940ec74e
MD5 2e6b1256e98ad3ca1629ed2395d6b013
BLAKE2b-256 cf950740d08e34f357f884b0917f4ff9c2ad2526a5b649f1f396759a79b232ae

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 563182fd51023f1d7898b509ed39e009a19c0ce352d8c410360154203eef68e2
MD5 c352cab84a4f8289d7e3a12233230b14
BLAKE2b-256 21ceca0ee563556bdc0dc60e69c3aaceab030a35978c6c57f3838211577224bf

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ad355567f6856b5b84f51f1c81e80a96b6914504b7691023deb8f0eccf321b95
MD5 f0557179747f8c46d0a2d336bb67eae1
BLAKE2b-256 9cb7127e7da62e9178b07070ae339729d38a79d7b3041d86f4d5613915ea224c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cec8f95d25922d1c17da29e6b367a8325fc2d73a01a765790fef25032456b413
MD5 6f2bef4ce64cca1971e084fa4e7d7896
BLAKE2b-256 05e346ec0e0966af3c8678814c3ed42d0f3167948768a1f0c7cafd735d45160f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 93e38ec5a4f34ee1cdacd5c93828ae2212eb946d5f6f451b649647906aa7e362
MD5 ede00a93d97cfb1f3dcbc0845284d612
BLAKE2b-256 cf37ee20af9ae10df951c6ac0b1860d469abb8a5eadb0ff87362ec084011e992

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 435.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ce51c2f9ce68427f5d736803b17a38d6db879d2fb5cbee994a920220f102fd91
MD5 c09c07ab9a90de8302e987bda0108e77
BLAKE2b-256 e2d7c6e24a2c2ad40bf917aa8f61cef92fe5c08e1b9532fa978bf541cbb349b8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp39-none-win32.whl
  • Upload date:
  • Size: 389.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 99c324c5ff6e74c93e57a401a81a60039b7b935230d20fac2a24dfb0ac6eff79
MD5 a5f8b7de5cac7e60eed1d033fb47aff4
BLAKE2b-256 70de468e22e402866616512a846692ce88546d55d446c5d1457f4f5c2a6033dd

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f977e08bffcac035607cd83255f24e6a1e117fecb2ff0dfdf6527547bccf7db7
MD5 7bcc06e492e573977d3a9bc2930f8648
BLAKE2b-256 a2eeb999c4e72f36dca4fa3e5e1e057180717b4239db32a4cc92625f4160ff2c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 06131b6ff46eda8288214dedbb184cde94cb285bcb97ae6834cb2d669deb955a
MD5 1e9e5acd5581a16c3fe36c03d5124f4d
BLAKE2b-256 79a820d95da68849a40ff6ae8a247f5cdcff729d58e6bd970caacadb4c6b79ae

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 434.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c5f2a14db1413ac70f773ba9a9b0461a78952f868675b4e1f6b767d2a4011d00
MD5 c279bb17019648cd6e1420c6b8d45dec
BLAKE2b-256 2aad6fe33abebe41cd548fa76ac5ca6b81b5ca238f344b27e9e30f0cdb1e4c24

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp38-none-win32.whl
  • Upload date:
  • Size: 389.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 758cb19b0b2b9fd2605ac3f34edb67c260519979dd6670514faf0289697083a1
MD5 9accbd0f05c462cd6131986eed4a93e0
BLAKE2b-256 c7b84e0a6f98d1bbe128b065a3b8b67c5b024d06548005e5a04498f3ff84e7b9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d77e5713a4e20221963f3488fa8868530074f749345842dd177bdec9b432f612
MD5 1510082b1d53947d4731f7b86548a4af
BLAKE2b-256 1a74d18f0dd89467f5ee6a8a5ea47649f97480e051bb0af582709abca7d7ab98

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ecc2d67d428b1a0196d67dfa84227455186acc13e4e82b79144300e91b3bfb36
MD5 c0545b705ae47a944131db58465664eb
BLAKE2b-256 ab0f95749bae6cd8bed3be06f175df8a67871c54ccc3cce65cdaf4f0fd5c8027

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 434.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c7fe85adcdf3d33cb9a5522b81293b64f3787a5e058799307b8ef6b5dc7800d0
MD5 8935dc988760d76f1783aad4e120b1c1
BLAKE2b-256 24c052f19435f945756379fae58c93696658fb5d594bf897087bdb38481c058d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.1-cp37-none-win32.whl
  • Upload date:
  • Size: 389.8 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.2

File hashes

Hashes for llm_rs-0.2.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c134a9faa5e8c10ca5945d7f3d97c34ce0ce303e32259d57862e5518dd24c87e
MD5 0dc2a566fdf5445780daa191332232ed
BLAKE2b-256 6c8b6a8e17f59cec1288a2dd70a508f483eb35714187f4b97121f8ea0c01cbd5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f6b7fbeb4383f5b0ed9adb6cd625a72e00ed0bcf8e86a68d9135ea065399bab
MD5 fb24b113b8478a311a59b521ffa0f0c8
BLAKE2b-256 1d59ab58f1b3d7f5fe334300115c4dd94496acb550efd5fc6cceed063c47fdbe

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b275771d7ddd6c5f7419f22a53540040a9e4ecbd1465f339e56706161755307
MD5 d6742b247d46976b6aa72978f2aeea89
BLAKE2b-256 86e1a844cc7bc0be3ecf5ac00109b2ec8441c1061ffaf8c6e4e71ff814d3f4b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page