Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

PyPI PyPI - License PyPI - Downloads

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Integrations:

  • 🦜️🔗 LangChain

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

🦜️🔗 LangChain Usage

Utilizing llm-rs-python through langchain requires additional dependencies. You can install these using pip install llm-rs[langchain]. Once installed, you gain access to the RustformersLLM model through the llm_rs.langchain module. This particular model offers features for text generation and embeddings.

Consider the example below, demonstrating a straightforward LLMchain implementation with MPT-Instruct:

from llm_rs.langchain import RustformersLLM
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

template="""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
Answer:"""

prompt = PromptTemplate(input_variables=["instruction"],template=template,)

llm = RustformersLLM(model_path_or_repo_id="rustformers/mpt-7b-ggml",model_file="mpt-7b-instruct-q5_1-ggjt.bin",callbacks=[StreamingStdOutCallbackHandler()])

chain = LLMChain(llm=llm, prompt=prompt)

chain.run("Write a short post congratulating rustformers on their new release of their langchain integration.")

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.10.tar.gz (50.4 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp311-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.10-cp311-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.10-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

llm_rs-0.2.10-cp310-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.10-cp310-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.10-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

llm_rs-0.2.10-cp39-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.10-cp39-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp38-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.10-cp38-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

llm_rs-0.2.10-cp37-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.10-cp37-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file llm_rs-0.2.10.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.10.tar.gz
  • Upload date:
  • Size: 50.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10.tar.gz
Algorithm Hash digest
SHA256 119a36ab4c933b0aad6cc66ac707d5768ea1e4460497aa73aff79674681288f9
MD5 df8dcc0bc4dfcf96f9f8c42c6dd1bac7
BLAKE2b-256 e504205da7622f2910586ef0010bcd72170a22f69aa683567909a4061c73c799

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 613e67aca555fe3739dd3118f5e864d282bde8b215958beea53ffa5d7fa6f8da
MD5 35294f62cdef89ede55bb227e43f4e74
BLAKE2b-256 65246d1502c000afce4e1e00770c01f509f51aa64000d1f2a6ee4e3d22719bf8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 512a2253123f344f3d570988c1a6e761488a9e73c0b36ae343c318c50fd72ee5
MD5 861458518683b98ad4facfa64b067c1b
BLAKE2b-256 27ea6cc010d25e439854e4bceb55ee69ff8403c25b31ffbffc9edd8cfaa69aa1

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68d01287e1350f9a4a927533d3d6362fa1cf37752e88a276fc99b27c3c90314a
MD5 323d17467fbeeca59f09a52b81261d23
BLAKE2b-256 3f97809826efb259402bca002e0e68dc060be2a524c4b09cac6065533f18b38d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6d6d9e08b154766a0f3db08709e6ddc4bafafb427c1912ca3e2c8eca4d3ff0d1
MD5 707453b01549cdaff618cc2c6ae5af60
BLAKE2b-256 0144f3b854be336b4a39adedd9cea8c9c40c62a93103b0564ac0c3875a67bb57

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c59d2cc5dc118a366062b9d4f2af163ee2511f6b73e464179d5457c398ae458
MD5 7b71193b009cadfaf338fd5ec7d910f4
BLAKE2b-256 3c1208761020181b52a1fbf07f61a577b7eecc122fcc5f1af19edce4cd7dfe84

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b3455ad5aa2c5ab219c4170da7c68a81c294ccefa3c34ff498440d7c6372611f
MD5 825db06d16d5233ee567dd16d7753f13
BLAKE2b-256 c3952e3131723f75cc1ddb6590cda0d98439696ec216ce77681f9a45f577c8b5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01ad42a8e840a2985270ff3eede1e667397a93689e69390de07409ba4444aba3
MD5 8bfe05124b3a6ce80c47293e8f4f7abf
BLAKE2b-256 55a4b37e7876f1d57a561215c54a120780aff3cacb0eca90c0fca313d2f2a1f2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1490933f6c439a767d6ba824dc66df42f4752ff3bccf98bed33351e60949691c
MD5 b15dffa55dbfc4acb76985c1392c86b3
BLAKE2b-256 a95a252acb427bf12d5205c40b7b774f3019ded0646fe52852df70266aeff605

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 7c34c2846e5d839505f25769ac68204630a904c32a6ed7e0142d222d754dae8e
MD5 143014c30267f212084b20637cb831fc
BLAKE2b-256 13a709faf6c7f9db8423864ad7485d6f55c08e0571d8ddd72df83e80e47925cf

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.10-cp311-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10-cp311-none-win32.whl
Algorithm Hash digest
SHA256 1ff5a454bc1257597db1edd108c37854b68549c2c78bf5bec4db576abab277df
MD5 2df75fe2b6fc96589e685e663beed726
BLAKE2b-256 9c79a86e1a96963da7e91970c04656cb79cf33f0ec8c9892e43d76da48ba1362

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5443fbe43f7fea00f4a54f2129b569bd92093f73b515082c0c77ee974627f1a8
MD5 a3c1c165c68ad1ec4a342196bd52101f
BLAKE2b-256 76167e86e7399ec12ed33a0a9f5e433978ef906a7cc07fe5b4c642f0211ada30

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aa07e385fa9ecbdbd5f65155d9cc95d711e29807213651772740ffb66163a8f7
MD5 8683861f9d87009f69ba88333c3a72ff
BLAKE2b-256 2a7da1b45dcc0c36426762f661a1b8e1b510d631edb3735c755afa57604c1815

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2545c1d736a4da9438856913ba185256a3cb87b42059e8757363b8113be63bf0
MD5 60b8e8143883f476e0ec2857904d0f23
BLAKE2b-256 ff9d76611437758758d28c6c28e57a1619d914dfb8cc689e14e4fad0968f78ce

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc83bbae2abdff31cdea1c6279ddfa9f0c7656648b35469369f72e50a8757e1d
MD5 78f4586d3a5fe11640e7976993f296f9
BLAKE2b-256 f06262fec4798f9e54193f0c0c820c3568b82db83435466d6b950ccae85545b0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 e929d6c450f92f7687a4f916a6a3fa84b2efe2e37a0a58b4ac3653284ae22d32
MD5 bf998fe48398ec1fcbf1ed249b8829c9
BLAKE2b-256 a5ae93804e2f79e66abf93fa19fc8de60fa4f35e7c4ba1cc559b902373bcd9e0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.10-cp310-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10-cp310-none-win32.whl
Algorithm Hash digest
SHA256 385f95934390e7689d0057a941b3a962f210013405a1f7996ac323ba5c9bb2cc
MD5 be682227586761d80a6a86465cf94735
BLAKE2b-256 70ae52da9b1c69521b809e8d39cfbb120e576d65cc41f40adcf61c550337acb7

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8d81801cd6a2305ed437159805edc3c3d78dd5e44d66f8adfd157ab814a416e
MD5 076115c0f99a5ff5423161f7634a4512
BLAKE2b-256 d87faf59d2ffd4296010655e828e300940e1411c5399e79b6df297fdf742ab4f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f1db0b57b8a3304a5253cfa21dbdcf4509333b2106ecdf23c2c23af99195bcf9
MD5 52effa89a6aad34adbee52341d94a537
BLAKE2b-256 791084611af05c9b310862e9554473274e1c48ebe19e554029ee9f265ce60db6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70c3d282207ba4f54cbb5193dd14afbaf2174c0c8263ec95151c477e262532b0
MD5 9e57845a7403a05160f746f14f0d64d6
BLAKE2b-256 b42498505d8c8ab7cf83117e2752e792d194303069c319671f60f1a6a571c5b5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 853b37a6d122239342168b1c5b44e255ae77b42bf2a16d20bf39929d4893f78c
MD5 7824b6210df623550c30eec13cb97892
BLAKE2b-256 248d46f4e7c76df26b5045f68dee67a257f534e677245191aea0a76f23a9acb4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8e261893f6bdf72a071191ad7a66725c5530c72c87aecca26d163d3a0fe4d621
MD5 ca56fe268831f2e34b536df9c70061a7
BLAKE2b-256 bf4e0e6e570913fbea2637ce09896ef107e34608c9efd3a1c0fe05534055ba5d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.10-cp39-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10-cp39-none-win32.whl
Algorithm Hash digest
SHA256 309b6d542927d9c10d58acc7d16fc4b9ced34ba9c91f558d87883507d5072366
MD5 4b456f8fe386fcb8de82cb9f4b6e63b2
BLAKE2b-256 9b4b3a8f7516e918e7a957dddf9144e1a51c2955b4ceebe27e2ddb475f1588ae

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfa245b0cfa09e8ba5e949718b803f66c1dfe6ee5ea54951417f4f1cd7db1af6
MD5 bbb4bf7aabf96a53b24beeba420d83e5
BLAKE2b-256 60b4172ced0cefd95c621d573365ad39d86c0b2732194048044644d387745c57

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 24f61c2b4bdc4cc6d5214ecfba06881de4ce8c795cf865165451f3f0558d3ef1
MD5 caf0408b537b83c080d3943eb95c1b1d
BLAKE2b-256 6b2aace6c83a2267aa447e07517d25268c58593e4ff8bc89b13facf1c9876469

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 29959cd1ee76d626406c39c0415de58eb6c78cacac69eb79d67461bb4154ad19
MD5 825f35e023e1032a817de7bc6c41801f
BLAKE2b-256 004b617be1d5e9a172eedb9be1a6a42df57a84d534dd3adbe1580dd3b4259483

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.10-cp38-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10-cp38-none-win32.whl
Algorithm Hash digest
SHA256 3c79e89ca6c0a7e6d25630fd6b02e065d8453558cfd3797dc8e95bc110e524d7
MD5 760a76664125ef1869eee80a92237a28
BLAKE2b-256 c26f77c3ebd419ed21c982f5959d8a877953f76a0b59f323a1cf350c9f06c70f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b94ab5d83e245a2a11ee5fc61a048185017a46c6f7e226477faf29ce504f829
MD5 05cdce6052decaf38b29115f08ab032f
BLAKE2b-256 eb6a4eaf38430039be1e2a5cc1100d287fcea4bd43742b4ddcf46703006c7eeb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5a5f17c78e5de8bcda903f3d3776843118165b1c5bc5597e9b83d786320de8b1
MD5 2a3251e676c9144be05e65a59276105e
BLAKE2b-256 e60c78dcf21b7c99a519c12f0bc038fcc55465da5652aefd51ce8944ea4cb014

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 54ffdd513183833f0111993d5eb0593a9e4c4bcdd1ecd905bed71d2e4210bc73
MD5 601ec90cf9066ece0f3fe864c4f0150e
BLAKE2b-256 919bf3bce7af938a1f4cb183c0ecf84435814238bd48d87d5f7cc9bbaf9be2fe

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.10-cp37-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.10-cp37-none-win32.whl
Algorithm Hash digest
SHA256 6cc848410d7f1cdd34d4c6b5ec11d40d215ec9db49bb2b3e257da0483bd4a1b8
MD5 dd9ce3faf8960595aaa6f6edccdf0d84
BLAKE2b-256 2923d06817e0397f4711490abddd4c8966dfa166010a3760324294f14e6d24a8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06dbb8b5747504490714bf92435d8e2ad61d91b16420a2e6e77ec93c03abd83a
MD5 fbfa5c9546168069e5042cb2dd69ef11
BLAKE2b-256 dc52c3b45b1b5c103255ace9f376bfcda72487f8a1529c687019bc4c6c18f333

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 256861dbab958d81977aa4b55e64d9febf89323621cafcd64dd9bd91f3a5c61e
MD5 5bb9c655fe27dc23ebc094e6fd020f28
BLAKE2b-256 c86aa0e1b3520cf06d836bf5017150ee30ebe85ead059ee420534b0e04e46b0e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page