Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running GGML converted models:

This example shows how a Llama model can be loaded.

from llm_rs import Llama

#load the model
model = Llama("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

Running Huggingface Hub Models

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output folder
export_folder = "path/to/folder" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_folder)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.3.tar.gz (30.2 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.3-cp311-none-win_amd64.whl (449.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.3-cp311-none-win32.whl (403.6 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.3-cp311-cp311-macosx_11_0_arm64.whl (592.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl (629.9 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.3-cp310-none-win_amd64.whl (449.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.3-cp310-none-win32.whl (403.6 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.3-cp310-cp310-macosx_11_0_arm64.whl (592.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl (629.9 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.3-cp39-none-win_amd64.whl (449.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.3-cp39-none-win32.whl (403.9 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.3-cp38-none-win_amd64.whl (449.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.3-cp38-none-win32.whl (403.8 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.3-cp37-none-win_amd64.whl (449.4 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.3-cp37-none-win32.whl (403.8 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.3.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.3.tar.gz
  • Upload date:
  • Size: 30.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3.tar.gz
Algorithm Hash digest
SHA256 664a9b8ec5f3d4e5be2c161989efedde40b33c2b4f69a04fb3026a69d8c442ad
MD5 eb79e20513526c6fe76fa19cf0fe015b
BLAKE2b-256 37bc980c9d9027e1067ec79dc875a1f910bf35785d2b1e19c6cf3eae0200167d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ce7118375d9a163cee9c64abf577afd0ca68ccc87751d1dbcf21e8a2a594227
MD5 e87c0bb2969187754c49a7d0ea6a8f10
BLAKE2b-256 aec0d9d42c59c019c39e552a10c71ec226d533ee75590dd1afe7814fb175f059

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0b244ae45e9205c964cf2e5d73f1acba998a89afba687b1b5940938c0d50a50f
MD5 1ba8e8e0bea79ec22a0448bcdcd6a667
BLAKE2b-256 6091e452ef905fb27efd9b17d46fec44e7dc3acb53cb86cde0a41eef8d950544

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1a255610d2d42efdb3e3c823d5599ffef8cdfe26b456ac1897dbd8eee38efce
MD5 65d3b46f071bcb1811a87b9bc13c0de3
BLAKE2b-256 dd84f6f857a8a225cf3e95b0e8df89b112dbdf2cc194ba8353f20688dd443a29

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f73fe95569bda6e923128125324bc9671f84694c49fdf49fe784bef2a0c67d91
MD5 6ce59651cd96dc211eb077614e6c44b4
BLAKE2b-256 da1880870f513c4fff3f6357eac9f310c33d45bd6fedc0bccc0dbc05efc8a013

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f999e8ff0c59b8ea3335482f1303bf06602ef0089823454e1bd21b45973bdf1
MD5 2c0887d3723098ee5c17cefd17d55c4c
BLAKE2b-256 1937ce0399ad7a86c2935a3bfcf8a9fa2ad5bd1c9289adabf00a1b129e34fff5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 961c048272eedc524a0987db8b52d195e34fe9f3aa154f577036a4dbeee5e7db
MD5 c1127cc8cf2856b1d00abe8419bdfaa6
BLAKE2b-256 5f06866cdb18aa2491ab75d12e7f5f2acf2b160155261b010e30229f3a1ddc6d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 449.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 0427f55470940625bd72c6b25c8ce70de5250a555d87ff0e949f115a114eea3d
MD5 e726e6f95d74ccfc0e25ca4b59f5cd1a
BLAKE2b-256 b1bf1a570e0adcf6e99c2f35ce90d01333f674a571e1aca0909306af90572956

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp311-none-win32.whl
  • Upload date:
  • Size: 403.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 a5ae047ed2fc08dd06ee304f095f117037599e198150e7954421491fa4bb237f
MD5 7e13bdf39f93766c39619b70ba6956d5
BLAKE2b-256 d942bcc850992acd9c224c523f054df9f5ba16faceb87ca91b295c96dee1b16f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81ade5d912324e5fc8ed6211fccb47cad88a986f90b7ccba30275c01328efbe6
MD5 747d60d545820480f19f1729b1f6db4e
BLAKE2b-256 e618a8e3d8dea455d438b58b75dea8c006b1e6b8123360f259397082ce6319c2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 50b273838e43627aee64f2e3645219ca2094e84bf7e719d33f9e57729bfc6990
MD5 3e914dc4fbb62c3bcba75482e76b3cdb
BLAKE2b-256 a7812a562afdb993cde2bc21877abfe111ca2f95e66f16638504e9a121c2a961

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1208c7ac6ab14db858c9150fff8ca683e7bca8c71b87b95d3ff73f794d6d2969
MD5 5e1d991a6fb03e28bf30fa52ea89f9f6
BLAKE2b-256 847c9951ecda559ae55f29e6e30af8688357e16b547b9c9d5e3d26770d067d91

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a6d053329465a5a842fdcbfb38e99c3338ac9b8921585be61f2232ffadd89ee8
MD5 2f947ee22ca388eeacc19178ce2666bd
BLAKE2b-256 962509e46aa35174436f6c9ab4a0761940733719838edd60ad2292c002bdf354

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 449.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5769f83574be49a5a02b49003a5f841cd3d832169a14847fc33160a9caee88c9
MD5 c7e7560f3c4b519c86699623e7329db0
BLAKE2b-256 71e41b436c6b206781775dba91940273ee8937aedab4ec806762a8adb75df569

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp310-none-win32.whl
  • Upload date:
  • Size: 403.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 3dc230a95ac9bbfa0426f531c25a4e9145d71a7886269cf8517b637b3fea0415
MD5 b54fd2aa31c1a91bf6c4fc4e17c709d5
BLAKE2b-256 ad1fdeb1e576f3144596bd496b2ed35717e38097610c6e3fb7452764f095664b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc49b15563714499bdac75403b47c1c6d2696abc95bb332dd77a0d8215ea14cb
MD5 4fc0e033e73fc20e913f6704b254a15b
BLAKE2b-256 10d2dfa53653757b35156c032208bc12e9044b9466f326b5ab40896562f8fae9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7f159c239d4b877bfc14c9f872c205943abf516975ac4f0d2b92b6123968ab88
MD5 fdda3145fed1ac44841a505835348b35
BLAKE2b-256 db95daf51c0dcfa2bd933a8e535ee35c814d218c577ad030bf594802c23a0c8c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4433ab2b63b6781aaca907f5b2fef4f3ecf2cdb40a61cf1b5d9ea123d81af078
MD5 f7a015e5b05630b637dd910765d8e7a2
BLAKE2b-256 7285f6fdef3f03edf6ec99f74224650ffd892dd94dfc4f69ffcacae6c44a3d15

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 597b2401495a0455f66207dc2864cfc094ecbda153a59351258fb597f8643cc4
MD5 1207b9aa09fc98f73a7fd3be7286583d
BLAKE2b-256 82b1ccba3961579289224d86d85c009f8922e7a0add8aec61d87d456ec34a9b0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 449.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 793aedb8dc6accc02bd3c63d7459b05aa920ccf605cb081ff4a0c79bdb879d45
MD5 671baafeb0a7176ac9eca83417fee873
BLAKE2b-256 c6c87b4190b8150ed790c61d13af23b6e312c7517b49a7bda1f280cb1df0e456

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp39-none-win32.whl
  • Upload date:
  • Size: 403.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 e8ec2d2f061d8cafc6344ed2a96a83c945719dd3b211d60c87575721848f7d82
MD5 502998c679d20669a4c8ae5b7b18071c
BLAKE2b-256 c955a3f2c31a1526ba328890744fa2e047102d51476ac9746e07c563ff211912

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f15cf0a63fb10be2d25ea9a2791dbacb51fb97e1f884a6f937dfa6af670ea99c
MD5 dc56dcb2e5247f98db473809baf1a967
BLAKE2b-256 af6ee8f507c351ca2e73019b699cff911f5f1e43231799d25083a321bdebec6b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ec264ed734df127b54f14f64f6f092414abd6021834097ee4e177ed5412bd74e
MD5 581bb62195ee7ada428af26b23d9a0d4
BLAKE2b-256 f7aa84c9219ae5688a343857cfd69ca517cd1a05ee790efd81d9838b5a9de6e8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 449.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 8b4e334cb30845f56ff10bed2691adff3a994e08b1de11d9763cbe1f2365abe6
MD5 567de8de74270cb8b6487f5698fc19fd
BLAKE2b-256 9da71a0bc3d20673512286e2aeed1f4b5f3fc70d925a054f125a65ef55b092a6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp38-none-win32.whl
  • Upload date:
  • Size: 403.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a8341d816e0646c02f16c026b75070786116d27a8ec1bff47050ac3ae9585c31
MD5 5171c335cdfff8714de51cf3e900f116
BLAKE2b-256 e969c48b56df2b935ed6442fbcbcae245e5004875ec47f7369babcfde59845f6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 beb848dd736555510ebfef1d19e399b0493885c9d294df77404b7e2469f37225
MD5 db54397c3224cc6887be6529060f9808
BLAKE2b-256 be62d5db1cb354fdd50e4e25d2cf6e5f6816423e40498c6e7a18e2330fdde11a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 05d486460e5ac1a05e98be31c2638bd93a514173e3acf3dc8a152cde56a9fd0d
MD5 4e42b0f8179bad3c91fec5bf52722814
BLAKE2b-256 25564da7ce9856a717ba7416008b3df1de2b20abe9b541e86650d27dee20801a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 449.4 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 3295917a986c5af13aa2a24c0ee0614fa3c28a943514a4f36fe41c2ad7df1759
MD5 3c9e7557fbc08c71eeeeb7cce3471a56
BLAKE2b-256 780118b064c73badbbfae0111379840cde6fb017233f7c15eab4345a81cbfa92

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.3-cp37-none-win32.whl
  • Upload date:
  • Size: 403.8 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.3-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c98e28439fff56e02c3e3e730715cc6d9cebeb6e26880805807ffd5b18d72014
MD5 592a0b415470e2774573e12b007ee6bf
BLAKE2b-256 df4f7738e2adf0270d23e3876b955c48a850756d326cb35cd93014c59f991f93

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4eb38ae0a3a51e32bb8d0747bca7c0d6c3b1d8a4f0ae7c28d5600430b657a72a
MD5 9f746a1862a66e75accc84ac01cd4043
BLAKE2b-256 a6ee592a0b4b8135a66c079c124c5fe648df4096cc78a3a7e10aa87d163e478c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1308857645053fc628ee02be615cfe2782871fa741a526d5ddc30569bed9a9c1
MD5 70f1327bb43e03ae8551ea43807d9a55
BLAKE2b-256 392be40c33d4561818470773c4b9e4bfdc7a133fa96a80012d50d30a80f8bd83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page