Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.6.tar.gz (34.0 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp311-none-win_amd64.whl (467.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.6-cp311-none-win32.whl (419.9 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp311-cp311-macosx_11_0_arm64.whl (613.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.6-cp311-cp311-macosx_10_7_x86_64.whl (654.3 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.6-cp310-none-win_amd64.whl (467.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.6-cp310-none-win32.whl (419.8 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp310-cp310-macosx_11_0_arm64.whl (613.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.6-cp310-cp310-macosx_10_7_x86_64.whl (654.3 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.6-cp39-none-win_amd64.whl (467.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.6-cp39-none-win32.whl (420.2 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp38-none-win_amd64.whl (467.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.6-cp38-none-win32.whl (419.9 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.6-cp37-none-win_amd64.whl (467.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.6-cp37-none-win32.whl (419.9 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.6.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.6.tar.gz
  • Upload date:
  • Size: 34.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6.tar.gz
Algorithm Hash digest
SHA256 5f84cf136b8093caf2a784679c355ca21dc937b0672e569a8b5f5acc3f07fb22
MD5 6a0bf9630cde118467683cda2be45f77
BLAKE2b-256 90763db5d33b028ef06429550b14e3e49b653eb3b2e987d1656a4635dc3f2850

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6b972c3c9fd79529f7bd01a8a55d1198c7322292f9a03eb2d8ab90547e39f86
MD5 f3042b2d8a718a9978292e5eb32b3b62
BLAKE2b-256 95980e10a1c5d70a15645225cca6066c5ac13dc339fd53efaa1241d77cdd5605

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3e4b08030f56e2e43db5c3de5125135a09bd2ba0e3e6d77bf24a6499b1e33f57
MD5 d077557f45adc9d99d70671f7d303ea0
BLAKE2b-256 dd517d3d449d7a945542a2a8e6930f776844cef2601dc87471047d873f8c2cca

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84db593c4939508887da3dd1dc881e9ec89317d138c106897f017a74be1ae02f
MD5 b106918c5d9d85caaed6b2209c631c72
BLAKE2b-256 cc58ce6a7f2e468c9af44d66ceac605fcbb1e1aae1d10357251443cf33d7ebd9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 127ddabacb96889949a61bc8fe58919df0dbfa2075b72370f161cfd8c1a6db1f
MD5 214698ebd0c7e607c7fb0da8cc44324e
BLAKE2b-256 f45f7d8c2dfe73e7e07911299a9b79fcf42c0360eb54d444cb39892b330fd011

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b716c7f46b1fc35496afe0e801150f5ad32a97ebf428c695dc0a1d5b38829ab
MD5 128eb68728e73e8814b91b413db68121
BLAKE2b-256 350fdff938e1e060d15d6c4de13b11ec9c67ec6e76f6a664fadfaec1a6d57a00

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 feab4e76d609168c314b499d3e0e745ca450c0db60f2113495f0c320e79d983e
MD5 17aa8c48126bccd0458762a64311f921
BLAKE2b-256 202e5f33e7559f7cfd04a31a04dcc0fc68f4474319dfc417357dc6200effffca

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86d1444f2ecf22a0b9fa6688a627031aa346330475e00294a33d53a4c40e2851
MD5 842050f6137846c1bed2dc71cf8d1603
BLAKE2b-256 efb330218013b4883faa32ab2d890f7e7cdcddf1f20c12a70fcbadc9a3211f91

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 067a9412f414397d5965954a714725457356fde2e318e758cc2b572894dba79f
MD5 5fedcc142c6985e5dabd538a420d8b1b
BLAKE2b-256 64a0abde5effac796f908fd340cc78ce014e4026aca0354032ec02aac5bddab3

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 467.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 021d8bbbc364ed0f2b194c238c5dffc434dd29fa3ff70529f37107293e15a50e
MD5 2d41736cec7b487901d85d3ab8893bb2
BLAKE2b-256 96f67b7d2ae4b87255c7bcf8d7de6fb99bb8458f0e1bebf599f44be7afc61f36

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp311-none-win32.whl
  • Upload date:
  • Size: 419.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp311-none-win32.whl
Algorithm Hash digest
SHA256 58928a9b7338403717c4b17fb697910bb1b9a68a2bbe7ef052f9e070508444db
MD5 1cdb197fe2d31f3b1c93eb44aa0813ab
BLAKE2b-256 aa9b18eb863319f8b1781b936716688335d70d9b99e2d8ab6f489d291c2b7ac1

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 716bb02679602c564dde3d35964ed19ec1f54782cf20834275a77a69a13a5ae8
MD5 c2bfd55cbd3d9d17992dbaae1cc83937
BLAKE2b-256 65ed99d85b2080d8eedd12b1a3c1a802437d08b5110bb2e0627bd4fe4a80a15b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fecc960fa6c16c9247dd96611677504d732336f676b30fbd30262d01b13640bb
MD5 3105c3422659ce79bac3da2ec41999c0
BLAKE2b-256 deffe420dc96f2a4d61095ce5d2db88a1c1ad8b78ba18b968695911203841d7f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acf58284a33cc5753153923c2b7f139ef98485730490406a74b601191c7e0e20
MD5 63c096b60193ffbc13d3d1199082c70b
BLAKE2b-256 a183993bf664ae9c252cdc6da5a5e5093522da9c1099aade3dc81ce8390305ef

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4c2d66f251fa1d0ff3d412dfcb1ec50f95360af3ffc4968a18fd439a0dc9f336
MD5 07da96b419ccf20e18359c4cd7a2ed3a
BLAKE2b-256 29ee41cb7412aa2478b4824e13edd5481261093a913ca125ffbf5810d49f9a72

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 467.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 7b02fe15282da4bc6c5ccf734d00d00c19151730de57e66976745ad8e8ed3bd6
MD5 8eac30be1ce8dabb85b10f1acdcf3c18
BLAKE2b-256 b397d63bc168b65518cc1f3d116bcdef8776625de8944ec8cb92cbb6bf428652

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp310-none-win32.whl
  • Upload date:
  • Size: 419.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp310-none-win32.whl
Algorithm Hash digest
SHA256 378625602afc585467886088f028424e7bd2fc9aa791597a6a1468e424d232cd
MD5 642282497603886141041bd8de587aac
BLAKE2b-256 db8b73e69adb0472e40ec1a20eee1bfdf0b324d77a3548535795482c5a333f7f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 567755482d1ce899949719cc09829a7ad698c4588b1f76af0dcb701357dbcef0
MD5 1c864b26950b3decf0dfaae6acd7e391
BLAKE2b-256 f262ad2609db008353c0835754bfbfa44f78ea17aa96b7f8cc98efcf0a7d618d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f233bc6e7540902f234e79e100ca7d6b11f41c13796e6b5ccd109612bd70e264
MD5 4fc927abeff79194fcb6a2365d477730
BLAKE2b-256 9ac223e4d2117507f129e1b373d993bf90d1acf6c2d45fb3b508ca0d1019b837

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 047c979f0d5babb600d4abe50823251b6d78f229a4319c3c321a69dddd810c0c
MD5 92cad17bc7c24f5e5f1b119cc9f1bcf2
BLAKE2b-256 998f2075f4209a3161d13e0f1b4be40df037bc072ea1d86b28251f35993ba36a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e4481dfa1d3b615f6bc7bbf648129dfc1054c175b78e7d866f114aee74c89236
MD5 b0e957f0b9730e902d0972e490db380f
BLAKE2b-256 d88bee02ddad89889497be2e3c45fd38e720fa2c3e351bd775dc3861c83070e0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 467.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 b3b5c5d58b2399b793c0e57e7561af72123c2378e3d20be6cdd3c72bacdb4a2e
MD5 2ebea64b6a521f9cd114679d8b4f6685
BLAKE2b-256 649bce8afbabc1791fc605bffb41ae6c986dd16334ec344b72974a5358f63627

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp39-none-win32.whl
  • Upload date:
  • Size: 420.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp39-none-win32.whl
Algorithm Hash digest
SHA256 360f8e303c88c4003266359e938316726d5db995e38ed51b3e6c5794bff90779
MD5 a5006a89f0b4625195168c8579c81c64
BLAKE2b-256 767a8a7824cff9a072b119c6358b667423a3a422138cc9cbea57e0767413a34a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 564fd0cebed161b1636910368e1fc5951658eb649b3f38e7877676a22e9a3854
MD5 00996782bf37322191d01094c09afbce
BLAKE2b-256 db7160efd0ab7d7f4bbae24f4d8530ba26a76505b637f9dc41fcec2311e30603

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b4c88209ff811e9047296e0217ff6df2e02e974d9d817df2a5ea4463b23648dd
MD5 cee39339411a6aafcee574b629f29318
BLAKE2b-256 d4bd2dd542a4e40f4e172f642db19bd4bb11f4660e52ed78242335ba33805985

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 467.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 301b582caa49151553b6c7462bf370847470d22dac8210a290d61950738d10fd
MD5 dd978ed8c0958f11ae3198dbeb45adaa
BLAKE2b-256 bff388048f6c80fd758bb1bf9d3675615e6c6717d203e145ad2e1fad49d11eb7

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp38-none-win32.whl
  • Upload date:
  • Size: 419.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp38-none-win32.whl
Algorithm Hash digest
SHA256 cdf351bd5c881002e62b62b85f320aecd39eefe51f939efb2c11c90df686d7b2
MD5 0c7da614b8d36314153720872696e669
BLAKE2b-256 4599dc8a32941db8200dce23061934f7200c9e0cc2691fbfeefdd2ae25e80924

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03d5517a5b527cb323261eff0233bf265db9b3a441f8e77226286f44d1ccedbd
MD5 6627cee7be79101803172cce13a73611
BLAKE2b-256 bfad654c7a0827937e2599dc69174458e515977cdda66723ea40b40b049b42d0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9a254f525b0c61d63e613852df65eb919791e9825ba0a65d8697e83ce5051f22
MD5 f31f8a10c875454cd9e273ed474aac2a
BLAKE2b-256 80885f013f25c1cba18cb322e1191388c4f67f2c84f9d18c9e197bbb9010d0d2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 467.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 94050bc5d2fd52218c4e4b61ac4def458a57e7d9bd8f326411fca4bba30efcce
MD5 54f894196c02e3edc0cf90007a703b36
BLAKE2b-256 93192dd1009c7ed74760724986dc3e2fefdb1e90413370d94bcb1fe1d58cd0a6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.6-cp37-none-win32.whl
  • Upload date:
  • Size: 419.9 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.6-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a4f9492f695ecf6b8d5712bcaab465c601852397681edbd420221c25c71fb347
MD5 2b889b4f396b71092e4405624c750b01
BLAKE2b-256 bbf5a1c73639f9071f6b4ea3b86ce445e46666c305a668085ff24724d9d9313e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 053361ec80ca0b94b26a365e7f28ffe5b36366ba49b29c47946dcff1bb77713d
MD5 830798887349c690fc10bbca54f6a243
BLAKE2b-256 91eb46f8ea5585b04e7a53c803e9aa58b8b41c0c06b645cb6adceacf00fcd72c

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c2de6e6dc705ff3aee9555a079f7abc699625c7c9c184ee249107cbc4233a39a
MD5 63a0435bcbda5ba160ab2be6a1a5eeab
BLAKE2b-256 b9912f474a2a2d627ed393f040aa5754469da6418f472b2b84c3099e9ceade36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page