Skip to main content

A library for compressing large language models utilizing the latest techniques and research in the field for both training aware and post training techniques. The library is designed to be flexible and easy to use on top of PyTorch and HuggingFace Transformers, allowing for quick experimentation.

Project description

LLM Compressor

llmcompressor is an easy-to-use library for optimizing models for deployment with vllm, including:

  • Comprehensive set of quantization algorithms for weight-only and activation quantization
  • Seamless integration with Hugging Face models and repositories
  • safetensors-based file format compatible with vllm
  • Large model support via accelerate

✨ Read the announcement blog here! ✨

LLM Compressor Flow

Supported Formats

  • Activation Quantization: W8A8 (int8 and fp8)
  • Mixed Precision: W4A16, W8A16
  • 2:4 Semi-structured and Unstructured Sparsity

Supported Algorithms

  • Simple PTQ
  • GPTQ
  • SmoothQuant
  • SparseGPT

Installation

pip install llmcompressor

Get Started

End-to-End Examples

Applying quantization with llmcompressor:

User Guides

Deep dives into advanced usage of llmcompressor:

Quick Tour

Let's quantize TinyLlama with 8 bit weights and activations using the GPTQ and SmoothQuant algorithms.

Note that the model can be swapped for a local or remote HF-compatible checkpoint and the recipe may be changed to target different quantization algorithms or formats.

Apply Quantization

Quantization is applied by selecting an algorithm and calling the oneshot API.

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot

# Select quantization algorithm. In this case, we:
#   * apply SmoothQuant to make the activations easier to quantize
#   * quantize the weights to int8 with GPTQ (static per channel)
#   * quantize the activations to int8 (dynamic per token)
recipe = [
    SmoothQuantModifier(smoothing_strength=0.8),
    GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]

# Apply quantization using the built in open_platypus dataset.
#   * See examples for demos showing how to pass a custom calibration set
oneshot(
    model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    dataset="open_platypus",
    recipe=recipe,
    output_dir="TinyLlama-1.1B-Chat-v1.0-INT8",
    max_seq_length=2048,
    num_calibration_samples=512,
)

Inference with vLLM

The checkpoints created by llmcompressor can be loaded and run in vllm:

Install:

pip install vllm

Run:

from vllm import LLM
model = LLM("TinyLlama-1.1B-Chat-v1.0-INT8")
output = model.generate("My name is")

Questions / Contribution

  • If you have any questions or requests open an issue and we will add an example or documentation.
  • We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmcompressor-nightly-0.2.0.20240918.tar.gz (159.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llmcompressor-nightly-0.2.0.20240918.tar.gz.

File metadata

File hashes

Hashes for llmcompressor-nightly-0.2.0.20240918.tar.gz
Algorithm Hash digest
SHA256 390977552582094b91de009e4658c7d31099287f0d005c77d1f552b3f17b8997
MD5 1413f0778052f884b48a80db2e96d73d
BLAKE2b-256 db5cdced5a00cd7f787b07b163875888c1338d88692d67e723e8a228d58ef5ca

See more details on using hashes here.

File details

Details for the file llmcompressor_nightly-0.2.0.20240918-py3-none-any.whl.

File metadata

File hashes

Hashes for llmcompressor_nightly-0.2.0.20240918-py3-none-any.whl
Algorithm Hash digest
SHA256 7cbbb850d15699521f48bcbb2bac5462709addaab2487ac1ce90c7943361dad1
MD5 190ace1e96ef328fcc3024b356e0d961
BLAKE2b-256 406922ebfcf38ba3da5c0983ab23df8e54beec31a3abd14c163f3e15d4addd8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page