Skip to main content

A library for compressing large language models utilizing the latest techniques and research in the field for both training aware and post training techniques. The library is designed to be flexible and easy to use on top of PyTorch and HuggingFace Transformers, allowing for quick experimentation.

Project description

tool icon LLM Compressor

llmcompressor is an easy-to-use library for optimizing models for deployment with vllm, including:

  • Comprehensive set of quantization algorithms for weight-only and activation quantization
  • Seamless integration with Hugging Face models and repositories
  • safetensors-based file format compatible with vllm
  • Large model support via accelerate

✨ Read the announcement blog here! ✨

LLM Compressor Flow

Supported Formats

  • Activation Quantization: W8A8 (int8 and fp8)
  • Mixed Precision: W4A16, W8A16
  • 2:4 Semi-structured and Unstructured Sparsity

Supported Algorithms

  • Simple PTQ
  • GPTQ
  • SmoothQuant
  • SparseGPT

Installation

pip install llmcompressor

Get Started

End-to-End Examples

Applying quantization with llmcompressor:

User Guides

Deep dives into advanced usage of llmcompressor:

Quick Tour

Let's quantize TinyLlama with 8 bit weights and activations using the GPTQ and SmoothQuant algorithms.

Note that the model can be swapped for a local or remote HF-compatible checkpoint and the recipe may be changed to target different quantization algorithms or formats.

Apply Quantization

Quantization is applied by selecting an algorithm and calling the oneshot API.

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot

# Select quantization algorithm. In this case, we:
#   * apply SmoothQuant to make the activations easier to quantize
#   * quantize the weights to int8 with GPTQ (static per channel)
#   * quantize the activations to int8 (dynamic per token)
recipe = [
    SmoothQuantModifier(smoothing_strength=0.8),
    GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]

# Apply quantization using the built in open_platypus dataset.
#   * See examples for demos showing how to pass a custom calibration set
oneshot(
    model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    dataset="open_platypus",
    recipe=recipe,
    output_dir="TinyLlama-1.1B-Chat-v1.0-INT8",
    max_seq_length=2048,
    num_calibration_samples=512,
)

Inference with vLLM

The checkpoints created by llmcompressor can be loaded and run in vllm:

Install:

pip install vllm

Run:

from vllm import LLM
model = LLM("TinyLlama-1.1B-Chat-v1.0-INT8")
output = model.generate("My name is")

Questions / Contribution

  • If you have any questions or requests open an issue and we will add an example or documentation.
  • We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmcompressor-nightly-0.3.0.20241112.tar.gz (173.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llmcompressor-nightly-0.3.0.20241112.tar.gz.

File metadata

File hashes

Hashes for llmcompressor-nightly-0.3.0.20241112.tar.gz
Algorithm Hash digest
SHA256 7f2579c297d259affd6d16a8140d145a72a8badac279053e35367eb504f487f6
MD5 9b5e9e7c98d8692bfc6d626c5a18bdd0
BLAKE2b-256 5e7839a5851894a1b882bb0e6f55d2898568c11fe8919f3b8e753d40a5bf12a3

See more details on using hashes here.

File details

Details for the file llmcompressor_nightly-0.3.0.20241112-py3-none-any.whl.

File metadata

File hashes

Hashes for llmcompressor_nightly-0.3.0.20241112-py3-none-any.whl
Algorithm Hash digest
SHA256 f70e206be92520e21b3904e5c1baccc94faa46a257bd60bd8ec4636b2575e109
MD5 c97ec8a332efc8806309bf4ec3e819bb
BLAKE2b-256 09057f4fc3049198b60d89c8b043a02f35edfbaf4bdba240962370dac5346673

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page