Python DBM style wrapper around LMDB (Lightning Memory-Mapped Database)
Project description
lmdbm
This is a Python DBM interface style wrapper around LMDB (Lightning Memory-Mapped Database).
It uses the existing lower level Python bindings py-lmdb.
This is especially useful on Windows, where otherwise dbm.dumb
is the default dbm
database.
Install
pip install lmdbm
Example
from lmdbm import Lmdb
with Lmdb.open("test.db", "c") as db:
db[b"key"] = b"value"
db.update({b"key1": b"value1", b"key2": b"value2"}) # batch insert, uses a single transaction
Use inheritance to store Python objects using json serialization
import json
from lmdbm import Lmdb
class JsonLmdb(Lmdb):
def _pre_key(self, value):
return value.encode("utf-8")
def _post_key(self, value):
return value.decode("utf-8")
def _pre_value(self, value):
return json.dumps(value).encode("utf-8")
def _post_value(self, value):
return json.loads(value.decode("utf-8"))
with JsonLmdb.open("test.db", "c") as db:
db["key"] = {"some": "object"}
obj = db["key"]
print(obj["some"]) # prints "object"
Warning
As of lmdb==1.2.1
the docs say that calling lmdb.Environment.set_mapsize
from multiple processes "may cause catastrophic loss of data". If lmdbm
is used in write mode from multiple processes, set autogrow=False
and map_size to a large enough value: Lmdb.open(..., map_size=2**30, autogrow=False)
.
Benchmarks
See benchmark.py
and requirements-bench.txt
. Other storage engines which could be tested: wiredtiger
, berkeleydb
.
Storage engines not benchmarked:
- tinydb
(because it doesn't have built-in str/bytes keys)
continuous writes in seconds (best of 3)
items | lmdbm | lmdbm-batch | pysos | sqlitedict | sqlitedict-batch | dbm.dumb | semidbm | vedis | vedis-batch | unqlite | unqlite-batch |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.000 | 0.015 | 0.000 | 0.031 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
100 | 0.094 | 0.000 | 0.000 | 0.265 | 0.016 | 0.188 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1000 | 1.684 | 0.016 | 0.015 | 3.885 | 0.124 | 2.387 | 0.016 | 0.015 | 0.015 | 0.016 | 0.000 |
10000 | 16.895 | 0.093 | 0.265 | 45.334 | 1.326 | 25.350 | 0.156 | 0.093 | 0.094 | 0.094 | 0.093 |
100000 | 227.106 | 1.030 | 2.698 | 461.638 | 12.964 | 238.400 | 1.623 | 1.388 | 1.467 | 1.466 | 1.357 |
1000000 | 3482.520 | 13.104 | 27.815 | 5851.239 | 133.396 | 2432.945 | 16.411 | 15.693 | 15.709 | 14.508 | 14.103 |
random reads in seconds (best of 3)
items | lmdbm | lmdbm-batch | pysos | sqlitedict | sqlitedict-batch | dbm.dumb | semidbm | vedis | vedis-batch | unqlite | unqlite-batch |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
100 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
1000 | 0.016 | 0.015 | 0.250 | 0.109 | 0.016 | 0.015 | 0.000 | ||||
10000 | 0.109 | 0.156 | 2.558 | 1.123 | 0.171 | 0.109 | 0.109 | ||||
100000 | 1.014 | 2.137 | 27.769 | 11.419 | 2.090 | 1.170 | 1.170 | ||||
1000000 | 10.390 | 24.258 | 447.613 | 870.580 | 22.838 | 214.486 | 211.319 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lmdbm-0.0.6.tar.gz
.
File metadata
- Download URL: lmdbm-0.0.6.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c1d0dd995b074fe72154cc59c9221b348afccb237e2994aa0a463d6621a4db9 |
|
MD5 | 04a778577b7d18fde3e45ee2bfc8ec43 |
|
BLAKE2b-256 | b9094395d7346c5b52ff918615a07c0e5340195973c8609afe0d9dd28d1a9f27 |
File details
Details for the file lmdbm-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: lmdbm-0.0.6-py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 452971c13009714acf21f47623fbec1b24fdc75e26062d9306580e615725d85b |
|
MD5 | 8753fe33e736d2d3902581fc38783762 |
|
BLAKE2b-256 | a9a42a1cdde24634fea724acd251eea56d727452a9bff7682633bf49998ad6bb |