Skip to main content

Simultaneous CIs for Ratios of Means of Log-Normal Populations with Zeros

Project description

https://img.shields.io/github/forks/badges/shields.svg?style=social&label=Fork https://img.shields.io/pypi/pyversions/Django.svg https://img.shields.io/cran/v/devtools.svg https://img.shields.io/pypi/v/nine.svg https://github.com/DataXujing/LN0SCIs/raw/master/pic/log.png

LN0SCIs

Jing Xu, Xinmin Li, Hua Liang

Introduction

This Python package based on the paper of Simultaneous Confidence Intervals for Ratios of Means of Log-normal Populations with Zeros by Xu et al. It provides some methods for construct simultaneous confidence intervals for ratios of means of Log-normal populations with excess zeros. At last, we select 4 excellent methods which based on generalized pivotal quantity with order statistics and two-step MOVER intervals. For the convenience of use, we make a Python package called LN0SCIs, and it also has a R version package on CRAN: https://CRAN.R-project.org/package=LN0SCIs

  • If you are a R User, you can install in your R kernal by Github:

    • devtools::install_github(‘DataXujing/LN0SCIs’)

  • Or you can also install by CRAN:

    • install.packages(‘LN0SCIs’)

  • If you are a Python user, you can

    • pip install LN0SCIs

Methods

We provaide four main functions in our LN0SCIs packages, FGW(),FGH(),MOVERW() and MOVERH(), if you want to deep understanding these four methods, you can read our paper: Simultaneous Confidence Intervals for Ratios of Means of Log-normal Populations with Zeros. the code we trust in GitHub. If you want to know how to realize them, you can read the source code.

Examples

  • FGW()

from LN0SCIs import *
#Example1:
alpha = 0.05
p = np.array([0.2,0.2,0.2])
n = np.array([30,30,30])
mu = np.array([0,0,0])
sigma = np.array([1,1,1])
N = 1000
FGW(n,p,mu,sigma,N)
#Example2:
p = np.array([0.1,0.1,0.1,0.1])
n = np.array([30,30,30,30])
mu = np.array([0,0,0,0])
sigma = np.array([1,1,1,1])
C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]])
N = 1000
FGW(n,p,mu,sigma,N,C2 = C2)
====================Method: FGW=====================
The Simultaneous Confidence Intervals are:
     The1th CIs            The2th CIs            The3th CIs
0  【-0.843638,0.789044】  【-0.629208,1.075959】  【-0.604469,1.158544】
**********************Time**************************
The cost time is:0 secs
====================Method: FGW=====================
The Simultaneous Confidence Intervals are:
     The1th CIs           The2th CIs           The3th CIs  \
0  【-0.912169,1.578679】  【-1.02404,0.812882】  【-0.83778,1.382352】

     The4th CIs            The5th CIs           The6th CIs
0  【-1.597962,0.650222】  【-1.337939,1.203199】  【-0.546039,1.25945】
**********************Time**************************
The cost time is:0 secs
  • FGH()

alpha = 0.05
p = np.array([0.2,0.2,0.2])
n = np.array([30,30,30])
mu = np.array([0,0,0])
sigma = np.array([1,1,1])
N = 1000
FGH(n,p,mu,sigma,N)
#Example2:
p = np.array([0.1,0.1,0.1,0.1])
n = np.array([30,30,30,30])
mu = np.array([0,0,0,0])
sigma = np.array([1,1,1,1])
C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]])
N = 1000
FGH(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
     The1th CIs            The2th CIs            The3th CIs
0  【-0.992276,1.455247】  【-0.703231,1.372774】  【-1.005873,1.124758】
**********************Time**************************
The cost time is:0 secs
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
    The1th CIs            The2th CIs            The3th CIs  \
0  【-1.62426,0.624984】  【-1.514528,0.553936】  【-1.565943,0.911157】

    The4th CIs            The5th CIs           The6th CIs
0  【-0.66646,1.010746】  【-0.829753,1.269381】  【-0.762683,1.07889】
**********************Time**************************
The cost time is:0 secs
  • MOVERW()

alpha = 0.05
p = np.array([0.2,0.2,0.2])
n = np.array([30,30,30])
mu = np.array([0,0,0])
sigma = np.array([1,1,1])
N = 1000
MOVERW(n,p,mu,sigma,N)
#Example2:
p = np.array([0.1,0.1,0.1,0.1])
n = np.array([30,30,30,30])
mu = np.array([0,0,0,0])
sigma = np.array([1,1,1,1])
C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]])
N = 1000
MOVERW(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
     The1th CIs            The2th CIs            The3th CIs
0  【-1.103496,1.211033】  【-1.030952,0.888781】  【-1.314926,1.059975】
**********************Time**************************
The cost time is:0 secs
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
    The1th CIs            The2th CIs            The3th CIs  \
0  【-1.68825,0.349316】  【-1.270833,1.236153】  【-1.304731,1.053776】

     The4th CIs            The5th CIs            The6th CIs
0  【-0.349427,1.679719】  【-0.364992,1.484843】  【-1.294225,1.071433】
**********************Time**************************
The cost time is:0 secs
  • MOVERH()

alpha = 0.05
p = np.array([0.2,0.2,0.2])
n = np.array([30,30,30])
mu = np.array([0,0,0])
sigma = np.array([1,1,1])
N = 1000
MOVERH(n,p,mu,sigma,N)
#Example2:
p = np.array([0.1,0.1,0.1,0.1])
n = np.array([30,30,30,30])
mu = np.array([0,0,0,0])
sigma = np.array([1,1,1,1])
C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]])
N = 1000
MOVERH(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
     The1th CIs            The2th CIs          The3th CIs
0  【-1.013305,0.765726】  【-1.152934,0.823283】  【-0.914194,0.8239】
**********************Time**************************
The cost time is:0 secs
====================Method: FGH=====================
The Simultaneous Confidence Intervals are:
     The1th CIs            The2th CIs           The3th CIs  \
0  【-0.681666,1.693927】  【-0.750657,1.458978】  【-1.21012,0.855608】

     The4th CIs            The5th CIs            The6th CIs
0  【-1.302431,1.003355】  【-1.762379,0.407925】  【-1.527028,0.467458】
**********************Time**************************
The cost time is:0 secs

Supports

Tested on Python 2.7, 3.5, 3.6

you can log in Xujing’s home page: https://dataxujing.coding.me or https://dataxujing.github.io to find the author(s), and if you want to learn more about simultaneous confidence intervals for the mixture distribution, you shou read the paper: Simulataneous Confidence Intervals for ratios of Means of Log-normal Populations with Zeros, which written by Jing Xu, Xinmin Li, and Hua Liang.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LN0SCIs-0.1.2.tar.gz (7.4 kB view details)

Uploaded Source

File details

Details for the file LN0SCIs-0.1.2.tar.gz.

File metadata

  • Download URL: LN0SCIs-0.1.2.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for LN0SCIs-0.1.2.tar.gz
Algorithm Hash digest
SHA256 a836147b9e6b22d857a7859d74b71cccb566d3ba75df3f1ed0bc75c4a71b738a
MD5 46d8e1aaf1e1fabc4fa5fe6617b0646c
BLAKE2b-256 808616ec7830bf2cee4e62ac0d34e1a1be24867ff89ecc8c745651c856bdfc73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page