Simultaneous CIs for Ratios of Means of Log-Normal Populations with Zeros
Project description
LN0SCIs
Jing Xu, Xinmin Li, Hua Liang
Introduction
This Python package based on the paper of Simultaneous Confidence Intervals for Ratios of Means of Log-normal Populations with Zeros by Xu et al. It provides some methods for construct simultaneous confidence intervals for ratios of means of Log-normal populations with excess zeros. At last, we select 4 excellent methods which based on generalized pivotal quantity with order statistics and two-step MOVER intervals. For the convenience of use, we make a Python package called LN0SCIs, and it also has a R version package on CRAN: https://CRAN.R-project.org/package=LN0SCIs
If you are a R User, you can install in your R kernal by Github:
devtools::install_github(‘DataXujing/LN0SCIs’)
Or you can also install by CRAN:
install.packages(‘LN0SCIs’)
If you are a Python user, you can
pip install LN0SCIs
Methods
We provaide four main functions in our LN0SCIs packages, FGW(),FGH(),MOVERW() and MOVERH(), if you want to deep understanding these four methods, you can read our paper: Simultaneous Confidence Intervals for Ratios of Means of Log-normal Populations with Zeros. the code we trust in GitHub. If you want to know how to realize them, you can read the source code.
Examples
FGW()
from LN0SCIs import * #Example1: alpha = 0.05 p = np.array([0.2,0.2,0.2]) n = np.array([30,30,30]) mu = np.array([0,0,0]) sigma = np.array([1,1,1]) N = 1000 FGW(n,p,mu,sigma,N) #Example2: p = np.array([0.1,0.1,0.1,0.1]) n = np.array([30,30,30,30]) mu = np.array([0,0,0,0]) sigma = np.array([1,1,1,1]) C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]]) N = 1000 FGW(n,p,mu,sigma,N,C2 = C2)
====================Method: FGW===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs 0 【-0.843638,0.789044】 【-0.629208,1.075959】 【-0.604469,1.158544】 **********************Time************************** The cost time is:0 secs ====================Method: FGW===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs \ 0 【-0.912169,1.578679】 【-1.02404,0.812882】 【-0.83778,1.382352】 The4th CIs The5th CIs The6th CIs 0 【-1.597962,0.650222】 【-1.337939,1.203199】 【-0.546039,1.25945】 **********************Time************************** The cost time is:0 secs
FGH()
alpha = 0.05 p = np.array([0.2,0.2,0.2]) n = np.array([30,30,30]) mu = np.array([0,0,0]) sigma = np.array([1,1,1]) N = 1000 FGH(n,p,mu,sigma,N) #Example2: p = np.array([0.1,0.1,0.1,0.1]) n = np.array([30,30,30,30]) mu = np.array([0,0,0,0]) sigma = np.array([1,1,1,1]) C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]]) N = 1000 FGH(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs 0 【-0.992276,1.455247】 【-0.703231,1.372774】 【-1.005873,1.124758】 **********************Time************************** The cost time is:0 secs ====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs \ 0 【-1.62426,0.624984】 【-1.514528,0.553936】 【-1.565943,0.911157】 The4th CIs The5th CIs The6th CIs 0 【-0.66646,1.010746】 【-0.829753,1.269381】 【-0.762683,1.07889】 **********************Time************************** The cost time is:0 secs
MOVERW()
alpha = 0.05 p = np.array([0.2,0.2,0.2]) n = np.array([30,30,30]) mu = np.array([0,0,0]) sigma = np.array([1,1,1]) N = 1000 MOVERW(n,p,mu,sigma,N) #Example2: p = np.array([0.1,0.1,0.1,0.1]) n = np.array([30,30,30,30]) mu = np.array([0,0,0,0]) sigma = np.array([1,1,1,1]) C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]]) N = 1000 MOVERW(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs 0 【-1.103496,1.211033】 【-1.030952,0.888781】 【-1.314926,1.059975】 **********************Time************************** The cost time is:0 secs ====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs \ 0 【-1.68825,0.349316】 【-1.270833,1.236153】 【-1.304731,1.053776】 The4th CIs The5th CIs The6th CIs 0 【-0.349427,1.679719】 【-0.364992,1.484843】 【-1.294225,1.071433】 **********************Time************************** The cost time is:0 secs
MOVERH()
alpha = 0.05 p = np.array([0.2,0.2,0.2]) n = np.array([30,30,30]) mu = np.array([0,0,0]) sigma = np.array([1,1,1]) N = 1000 MOVERH(n,p,mu,sigma,N) #Example2: p = np.array([0.1,0.1,0.1,0.1]) n = np.array([30,30,30,30]) mu = np.array([0,0,0,0]) sigma = np.array([1,1,1,1]) C2 = np.array([[-1,1,0,0],[-1,0,1,0],[-1,0,0,1],[0,-1,1,0],[0,-1,0,1],[0,0,-1,1]]) N = 1000 MOVERH(n,p,mu,sigma,N,C2 = C2)
====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs 0 【-1.013305,0.765726】 【-1.152934,0.823283】 【-0.914194,0.8239】 **********************Time************************** The cost time is:0 secs ====================Method: FGH===================== The Simultaneous Confidence Intervals are: The1th CIs The2th CIs The3th CIs \ 0 【-0.681666,1.693927】 【-0.750657,1.458978】 【-1.21012,0.855608】 The4th CIs The5th CIs The6th CIs 0 【-1.302431,1.003355】 【-1.762379,0.407925】 【-1.527028,0.467458】 **********************Time************************** The cost time is:0 secs
Supports
Tested on Python 2.7, 3.5, 3.6
pip install LN0SCIs
Download: https://pypi.python.org/pypi/LN0SCIs
Documentation: https://github.com/DataXujing/LN0SCIs
It has a R packages version which we have created, details you can see: https://CRAN.R-project.org/package=LN0SCIs
you can log in Xujing’s home page: https://dataxujing.coding.me or https://dataxujing.github.io to find the author(s), and if you want to learn more about simultaneous confidence intervals for the mixture distribution, you shou read the paper: Simulataneous Confidence Intervals for ratios of Means of Log-normal Populations with Zeros, which written by Jing Xu, Xinmin Li, and Hua Liang.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file LN0SCIs-0.1.2.tar.gz
.
File metadata
- Download URL: LN0SCIs-0.1.2.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a836147b9e6b22d857a7859d74b71cccb566d3ba75df3f1ed0bc75c4a71b738a |
|
MD5 | 46d8e1aaf1e1fabc4fa5fe6617b0646c |
|
BLAKE2b-256 | 808616ec7830bf2cee4e62ac0d34e1a1be24867ff89ecc8c745651c856bdfc73 |