Skip to main content

Package to display a progress bar for long processes with uncertain end times

Project description

LoadTime

English | 日本語

LoadTime is a Python package designed specifically to tackle the challenge of long waiting times associated with loading large-scale pretrained language models, such as HuggingFace models, into GPU or CPU memory.

With LoadTime, instead of waiting in uncertainty, you can visualize the progress of your loading process.

Of course, it can also be used for other long-term operations.

Installation

You can install LoadTime via pip:

pip install loadtime

Key Features

  • Real-time tracking: LoadTime provides real-time tracking of the loading process. No more staring at a static screen!

  • Progress Bar: The package displays a progress bar, showing you how much of the process has been completed and how much is still remaining. It takes the guesswork out of waiting!

  • Past Loading Time Cache: One unique feature of LoadTime is its ability to remember the time it took to load a model in the past. The package automatically caches the total loading time of your operations. The next time you load the same model, LoadTime uses this cached information to provide an even more accurate progress bar.

  • Customizable Display: LoadTime allows you to customize the progress display with your own messages. You can tailor the tool to fit your personal needs.

  • Optimized for HuggingFace Models: LoadTime has been optimized for loading HuggingFace models, with special handling of the download progress display when the model is not cached locally.

Basic Usage

Here is a simple example of how to use the LoadTime package:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from loadtime import LoadTime

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"

model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

tokenizer = AutoTokenizer.from_pretrained(model_path) # important: load tokenizer after loading model

Initial Parameters

Parameter Description
name Name of the long-term process. For loading HuggingFace models, specify the model name.
message Specify the message to be displayed. If omitted, the default message is used.
pbar Set to True to display the progress bar and percentage.
dirname Directory name for cache storage.
hf Set to True to use for time display for loading HuggingFace models. If the model data has not yet been downloaded to the disk, HuggingFace's loader displays the download progress, so this library does not display it.
fn Function to execute the long-term process.
fn_print Function to perform the display. If omitted, it will be output to the console.

Take control of your loading times with LoadTime!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loadtime-1.0.3.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

loadtime-1.0.3-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file loadtime-1.0.3.tar.gz.

File metadata

  • Download URL: loadtime-1.0.3.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for loadtime-1.0.3.tar.gz
Algorithm Hash digest
SHA256 483b759c18a3db81d014ec99a266a7e7e9a916768983c726e37cc043c4ffd83c
MD5 5a3a24459e4d43a4b8c81d277ea498c1
BLAKE2b-256 7988231db989a4de0c061816f0df573071abd027abc2705e8471793ad1cb25f6

See more details on using hashes here.

File details

Details for the file loadtime-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: loadtime-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for loadtime-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3803e176d31e3e62367c07f156f4cacb0b0f2b25dd4a67af5fc3b70c82e6684e
MD5 81173e75c5d859598784764f53ecfd0f
BLAKE2b-256 83d851e35c4de5f8bee3b5f23491c83d7184c5563c2856800c2c6caa68615d2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page