Skip to main content

Locate RGB values in a picture! Up to 10x faster than NumPy, 100x faster than PIL.

Project description

Locate RGB values in a picture! Up to 10x faster than NumPy, 100x faster than PIL.

How to install

pip install locate-pixelcolor-cpp

Please install this C++ compiler:

MSVC ..... C++ x64/x86 build tools from: https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&passive=false&cid=2030

Localize the following files (Version number might vary) and copy their path:

vcvarsall_bat = r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsall.bat"

cl_exe = r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.34.31933\bin\Hostx86\x64\cl.exe"

link_exe = r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.34.31933\bin\Hostx86\x64\link.exe"

Compile the code

from locate_pixelcolor_cpp import compile_localize_picture_color_with_cpp

compile_localize_picture_color_with_cpp(

    vcvarsall_bat=r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsall.bat",

    cl_exe=r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.34.31933\bin\Hostx86\x64\cl.exe",

    link_exe=r"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.34.31933\bin\Hostx86\x64\link.exe",

)

Benchmark

# Let's use a 4525 x 6623 x 3 picture https://www.pexels.com/pt-br/foto/foto-da-raposa-sentada-no-chao-2295744/



from locate_pixelcolor_cpp import search_colors # The function can only be imported when the compilation was successful ( compile_localize_picture_color_with_cpp )

import cv2

path=r"C:\Users\Gamer\Documents\Downloads\pexels-alex-andrews-2295744.jpg"

im = cv2.imread(path)





colors=[(66,  71,  69),(62,  67,  65),(144, 155, 153),(52,  57,  55),(127, 138, 136),(53,  58,  56),(51,  56,  54),(32,  27,  18),(24,  17,   8),]

#%timeit search_colors(im, colors=colors)

##127 ms ± 3.61 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)



from locate_pixelcolor import search_colors as search_colors2

# first version with numexpr

# https://github.com/hansalemaos/locate_pixelcolor

#%timeit search_colors2(im,colors)

##400 ms ± 18.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)



import numpy as np 

b,g,r = im[...,0],im[...,1],im[...,2]

#%timeit np.where(((b==66)&(g==71)&(r==69))|((b==62)&(g==67)&(r==65))|((b==144)&(g==155)&(r==153))|((b==52)&(g==57)&(r==55))|((b==127)&(g==138)&(r==136))|((b==53)&(g==58)&(r==56))|((b==51)&(g==56)&(r==54))|((b==32)&(g==27)&(r==18))|((b==24)&(g==17)&(r==8)))

##1 s ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)





from PIL import Image

img = Image.open(path)

img = img.convert("RGB")

datas = img.getdata()



def pi():

    newData = []

    for item in datas:

        if (item[0] == 66 and item[1] == 71 and item[2] == 69) or (item[0] == 62 and item[1] == 67 and item[2] == 65) or (item[0] == 144 and item[1] == 155 and item[2] == 153) or (item[0] == 52 and item[1] == 57 and item[2] == 55) or (item[0] == 127 and item[1] == 138 and item[2] == 136) or (item[0] == 53 and item[1] == 58 and item[2] == 56) or (item[0] == 51 and item[1] == 56 and item[2] == 54) or (item[0] == 32 and item[1] == 27 and item[2] == 18) or (item[0] == 24 and item[1] == 17 and item[2] == 8):

            newData.append(item)

    return newData

%timeit pi()



##10.6 s ± 51.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)





## One color 



from locate_pixelcolor_cpp import search_colors

import cv2

path=r"C:\Users\Gamer\Documents\Downloads\pexels-alex-andrews-2295744.jpg"

im = cv2.imread(path)

#%timeit search_colors(im, colors=[(255,255,255)])

#75.3 ms ± 247 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)







# first version with numexpr

# https://github.com/hansalemaos/locate_pixelcolor

from locate_pixelcolor import search_colors

import cv2

path=r"C:\Users\Gamer\Documents\Downloads\pexels-alex-andrews-2295744.jpg"

im = cv2.imread(path)

# %timeit search_colors(im, colors=[(255,255,255)])

# 98 ms ± 422 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)





b,g,r = im[...,0],im[...,1],im[...,2]

# %timeit np.where(((b==255)&(g==255)&(r==255)))

# 150 ms ± 209 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)







from PIL import Image

img = Image.open(path)

img = img.convert("RGB")

datas = img.getdata()

def get_coords_with_pil(col):

    newData = []

    for item in datas:

        if item[0] == col[0] and item[1] == col[1] and item[2] == col[2]:

            newData.append(item)

    return newData

%timeit get_coords_with_pil(col=(255,255,255))

3.41 s ± 14.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

locate_pixelcolor_cpp-0.10.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

locate_pixelcolor_cpp-0.10-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file locate_pixelcolor_cpp-0.10.tar.gz.

File metadata

  • Download URL: locate_pixelcolor_cpp-0.10.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for locate_pixelcolor_cpp-0.10.tar.gz
Algorithm Hash digest
SHA256 ee42e4912987620f719b082561617ce4f7d08f740356b86caa6bf517531e2fdc
MD5 facab53f7939b32dceae8e3284597866
BLAKE2b-256 774c9de1e115d6da2aa5f66007b82cafb63e436b499e05f947fc6d7f2cef033a

See more details on using hashes here.

File details

Details for the file locate_pixelcolor_cpp-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for locate_pixelcolor_cpp-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 4842591ebdcdbba547b45a8ed468a2e58f4465769bd30f9bf3eda4dda84885a3
MD5 366fec87c41548b8a95e567c8c51151f
BLAKE2b-256 a50f1a831713c50a6f79ca891a64ff4b599e9f678dd208774e311a5c09818af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page