Skip to main content

Compiled Cython Code - Detects colors in images 2-3 x faster than Numpy

Project description

Compiled Cython Code - Detects colors in images 2-3 x faster than Numpy

pip install locate-pixelcolor-cythonsingle

Tested+compiled against Windows 10 / Python 3.10 / Anaconda

If you can't import it, compile it on your system (code at the end of this page)

How to use it in Python

import numpy as np
import cv2
from locate_pixelcolor_cythonsingle import search_colors
# 4525 x 6623 x 3 picture https://www.pexels.com/pt-br/foto/foto-da-raposa-sentada-no-chao-2295744/
picx = r"C:\Users\hansc\Downloads\pexels-alex-andrews-2295744.jpg"
pic = cv2.imread(picx)
colors0 = np.array([[255, 255, 255]],dtype=np.uint8)
resus0 = search_colors(pic=pic, colors=colors0)
colors1=np.array([(66,  71,  69),(62,  67,  65),(144, 155, 153),(52,  57,  55),(127, 138, 136),(53,  58,  56),(51,  56,  54),(32,  27,  18),(24,  17,   8),],dtype=np.uint8)
resus1 =  search_colors(pic=pic, colors=colors1)
####################################################################
%timeit resus0 = search_colors(pic=pic, colors=colors0)
51 ms ± 201 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

b,g,r = pic[...,0],pic[...,1],pic[...,2]
%timeit np.where(((b==255)&(g==255)&(r==255)))
150 ms ± 209 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
####################################################################
%timeit resus1 =  search_colors(pic=pic, colors=colors1)
443 ms ± 1.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit np.where(((b==66)&(g==71)&(r==69))|((b==62)&(g==67)&(r==65))|((b==144)&(g==155)&(r==153))|((b==52)&(g==57)&(r==55))|((b==127)&(g==138)&(r==136))|((b==53)&(g==58)&(r==56))|((b==51)&(g==56)&(r==54))|((b==32)&(g==27)&(r==18))|((b==24)&(g==17)&(r==8)))
1 s ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
####################################################################

The Cython Code

# cython: language_level=3

import numpy as np
cimport numpy as np

cpdef searchforcolor(np.uint8_t[::1] pic, np.uint8_t[::1] colors, int width, int totallengthpic, int totallengthcolor, int[::1] outputx, int[ ::1] outputy, int[::1] lastresult):
    cdef int counter = 0
    cdef unsigned char r, g, b
    cdef int i, j

    for i in range(0, totallengthcolor, 3):
        r = colors[i]
        g = colors[i + 1]
        b = colors[i + 2]
        for j in range(0, totallengthpic, 3):
            if ( r== pic[j]) and (g == pic[j+1]) and (b == pic[j+2]):
                dividend = j // 3
                quotient = dividend // width
                remainder = dividend % width
                outputx[counter] = quotient
                outputy[counter] = remainder
                lastresult[0] = counter
                counter += 1

# .\python.exe .\colorsearchcythonsinglesetup.py build_ext --inplace

setup.py to compile the code

# cython: language_level=3

from setuptools import Extension, setup
from Cython.Build import cythonize
import numpy as np
ext_modules = [
    Extension("colorsearchcythonsingle", ["colorsearchcythonsingle.pyx"], include_dirs=[np.get_include()],define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")])
]

setup(
    name='colorsearchcythonsingle',
    ext_modules=cythonize(ext_modules),
)


# .\python.exe .\colorsearchcythonsinglesetup.py build_ext --inplace

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

locate_pixelcolor_cythonsingle-0.11.tar.gz (80.4 kB view hashes)

Uploaded Source

Built Distribution

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page