Compiled Cython Code - Detects colors in images 2-3 x faster than Numpy
Project description
Compiled Cython Code - Detects colors in images 2-3 x faster than Numpy
pip install locate-pixelcolor-cythonsingle
Tested+compiled against Windows 10 / Python 3.10 / Anaconda
If you can't import it, compile it on your system (code at the end of this page)
How to use it in Python
import numpy as np
import cv2
from locate_pixelcolor_cythonsingle import search_colors
# 4525 x 6623 x 3 picture https://www.pexels.com/pt-br/foto/foto-da-raposa-sentada-no-chao-2295744/
picx = r"C:\Users\hansc\Downloads\pexels-alex-andrews-2295744.jpg"
pic = cv2.imread(picx)
colors0 = np.array([[255, 255, 255]],dtype=np.uint8)
resus0 = search_colors(pic=pic, colors=colors0)
colors1=np.array([(66, 71, 69),(62, 67, 65),(144, 155, 153),(52, 57, 55),(127, 138, 136),(53, 58, 56),(51, 56, 54),(32, 27, 18),(24, 17, 8),],dtype=np.uint8)
resus1 = search_colors(pic=pic, colors=colors1)
####################################################################
%timeit resus0 = search_colors(pic=pic, colors=colors0)
51 ms ± 201 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
b,g,r = pic[...,0],pic[...,1],pic[...,2]
%timeit np.where(((b==255)&(g==255)&(r==255)))
150 ms ± 209 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
####################################################################
%timeit resus1 = search_colors(pic=pic, colors=colors1)
443 ms ± 1.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit np.where(((b==66)&(g==71)&(r==69))|((b==62)&(g==67)&(r==65))|((b==144)&(g==155)&(r==153))|((b==52)&(g==57)&(r==55))|((b==127)&(g==138)&(r==136))|((b==53)&(g==58)&(r==56))|((b==51)&(g==56)&(r==54))|((b==32)&(g==27)&(r==18))|((b==24)&(g==17)&(r==8)))
1 s ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
####################################################################
The Cython Code
# cython: language_level=3
import numpy as np
cimport numpy as np
cpdef searchforcolor(np.uint8_t[::1] pic, np.uint8_t[::1] colors, int width, int totallengthpic, int totallengthcolor, int[::1] outputx, int[ ::1] outputy, int[::1] lastresult):
cdef int counter = 0
cdef unsigned char r, g, b
cdef int i, j
for i in range(0, totallengthcolor, 3):
r = colors[i]
g = colors[i + 1]
b = colors[i + 2]
for j in range(0, totallengthpic, 3):
if ( r== pic[j]) and (g == pic[j+1]) and (b == pic[j+2]):
dividend = j // 3
quotient = dividend // width
remainder = dividend % width
outputx[counter] = quotient
outputy[counter] = remainder
lastresult[0] = counter
counter += 1
# .\python.exe .\colorsearchcythonsinglesetup.py build_ext --inplace
setup.py to compile the code
# cython: language_level=3
from setuptools import Extension, setup
from Cython.Build import cythonize
import numpy as np
ext_modules = [
Extension("colorsearchcythonsingle", ["colorsearchcythonsingle.pyx"], include_dirs=[np.get_include()],define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")])
]
setup(
name='colorsearchcythonsingle',
ext_modules=cythonize(ext_modules),
)
# .\python.exe .\colorsearchcythonsinglesetup.py build_ext --inplace
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for locate_pixelcolor_cythonsingle-0.11.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f4b374692422e96c37f1a6ef360570bbf19c74c641c1489d855b27bad587282 |
|
MD5 | f7a84f322f5833d8939e0e8e78668db7 |
|
BLAKE2b-256 | fcd0a7872dfc16bc2fcdbfd08702c0e9efbb7f631a67dd5e5961487631a0649f |
Close
Hashes for locate_pixelcolor_cythonsingle-0.11-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a7103920fbe91d38fb84a20d6914deb25249943e76f9ab2c5bcd159c8e0bbad |
|
MD5 | 9a8b328006b82b4d190c70a6cfc30271 |
|
BLAKE2b-256 | c6945e90eb87e5ec9831d5f259fc770fbe0b44421b56d3bd3638af318e9411f9 |