A collection of LogitsProcessors to customize and enhance LLM behavior for specific tasks.
Project description
logits-processor-zoo
Struggling to get LLMs to follow your instructions? LogitsProcessorZoo offers a zoo of tools to use LLMs for specific tasks, beyond just grammar enforcement!
Supported Frameworks
- transformers
- vLLM
- TensorRT-LLM
Usage
import vllm
from logits_processor_zoo.vllm import GenLengthLogitsProcessor, CiteFromPromptLogitsProcessor, ForceLastPhraseLogitsProcessor
model = vllm.LLM(
model_name,
trust_remote_code=True,
dtype="half",
enforce_eager=True
)
tokenizer = model.get_tokenizer()
logits_processors = [
CiteFromPromptLogitsProcessor(tokenizer, boost_factor=2.0),
GenLengthLogitsProcessor(tokenizer, boost_factor=-0.2, p=1),
ForceLastPhraseLogitsProcessor("\n\nReferences:\n", tokenizer)
]
gen_output = model.generate(
prompts,
vllm.SamplingParams(
n=1,
temperature=0,
seed=0,
skip_special_tokens=True,
max_tokens=64,
logits_processors=logits_processors
),
use_tqdm=False
)
For the detailed examples in each framework, please have a look at example_notebook directory.
Available Logits Processors
GenLengthLogitsProcessor
A logits processor that adjusts the likelihood of the end-of-sequence (EOS) token based on the length of the generated sequence, encouraging or discouraging shorter answers.
CiteFromPromptLogitsProcessor
A logits processor which boosts or diminishes the likelihood of tokens present in the prompt (and optionally EOS token) to encourage the model to generate tokens similar to those seen in the prompt or vice versa.
ForceLastPhraseLogitsProcessor
A logits processor which forces LLMs to use the given phrase before they finalize their answers. Most common use cases can be providing references, thanking user with context etc.
MultipleChoiceLogitsProcessor
A logits processor to answer multiple choice questions with one of the choices. A multiple choice question is like:
I am getting a lot of calls during the day. What is more important for me to consider when I buy a new phone?
0. Camera
1. Screen resolution
2. Operating System
3. Battery
The goal is to make LLM generate "3" as an answer.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file logits_processor_zoo-0.1.0.tar.gz
.
File metadata
- Download URL: logits_processor_zoo-0.1.0.tar.gz
- Upload date:
- Size: 10.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.13 Linux/5.4.95-050495-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab4af322fbb45dc80554bb1a1d6945562a2c386b011ef66f2a4c7ccb3f07c9c3 |
|
MD5 | 18d87fc5ace121eb1a1cf8a4e6dfb84f |
|
BLAKE2b-256 | 73192037379dda8e2e1cd75255cf30d68f8b7ab09264d9ef032b605ecc44156a |
File details
Details for the file logits_processor_zoo-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: logits_processor_zoo-0.1.0-py3-none-any.whl
- Upload date:
- Size: 26.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.13 Linux/5.4.95-050495-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec8eb48ae79e819168cfc97f413d26bd42ccec39394e835c58fff5065adf6b20 |
|
MD5 | 11a6815093b8eae6aefef0e7e22117b3 |
|
BLAKE2b-256 | d5175cddf7cbd856b6386fdcf6193d5f5f38a9eb7ad6c1c4d5a69c06d22a2b63 |