Skip to main content

Prepare data to run the LOONE model.

Project description

LOONE_DATA_PREP

LOONE_DATA_PREP

Prepare data for the LOONE water quality model.

Line to the LOONE model: https://pypi.org/project/loone Link to LOONE model repository: https://github.com/Aquaveo/LOONE

Prerequisites:

Installation:

pip install loone_data_prep

Development Installation:

cd /path/to/loone_data_prep/repo
pip install -e .

Examples

From the command line:

# Get flow data
python -m loone_data_prep.flow_data.get_inflows /path/to/workspace/
python -m loone_data_prep.flow_data.get_outflows /path/to/workspace/
python -m loone_data_prep.flow_data.S65E_total /path/to/workspace/

# Get water quality data
python -m loone_data_prep.water_quality_data.get_inflows /path/to/workspace/
python -m loone_data_prep.water_quality_data.get_lake_wq /path/to/workspace/

# Get weather data
python -m loone_data_prep.weather_data.get_all /path/to/workspace/

# Get water level
python -m loone_data_prep.water_level_data.get_all /path/to/workspace/

# Interpolate data
python -m loone_data_prep.utils interp_all /path/to/workspace/

# Prepare data for LOONE
python -m loone_data_prep.LOONE_DATA_PREP /path/to/workspace/ /path/to/output/directory/

From Python:

from loone_data_prep.utils import get_dbkeys
from loone_data_prep.water_level_data import hydro
from loone_data_prep import LOONE_DATA_PREP

input_dir = '/path/to/workspace/'
output_dir = '/path/to/output/directory/'

# Get dbkeys for water level data
dbkeys = get_dbkeys(
    station_ids=["L001", "L005", "L006", "LZ40"],
    category="SW",
    param="STG",
    stat="MEAN",
    recorder="CR10",
    freq="DA",
    detail_level="dbkey"
)

# Get water level data
hydro.get(
    workspace=input_dir,
    name="lo_stage",
    dbkeys=dbkeys,
    date_min="1950-01-01",
    date_max="2023-03-31"
)

# Prepare data for LOONE
LOONE_DATA_PREP(input_dir, output_dir)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loone_data_prep-0.1.9.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

loone_data_prep-0.1.9-py3-none-any.whl (63.4 kB view details)

Uploaded Python 3

File details

Details for the file loone_data_prep-0.1.9.tar.gz.

File metadata

  • Download URL: loone_data_prep-0.1.9.tar.gz
  • Upload date:
  • Size: 51.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for loone_data_prep-0.1.9.tar.gz
Algorithm Hash digest
SHA256 6cd5a604ed5c3365cf3809460658aad36893cd420d1c194031662b504cae622e
MD5 79251759ab5214dcc7a4097d28f2a45c
BLAKE2b-256 b24be5bcfbfd75d65ff9e43239f09ff449758fbc5325189e5c5edb43a3a7d5c7

See more details on using hashes here.

File details

Details for the file loone_data_prep-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for loone_data_prep-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 73622f9d99487ab432b685961782a2ec6018d9b208fac52e464fb966a70cc834
MD5 6241644b43fe68e5fef25d75b9e49d31
BLAKE2b-256 cdc9ff01b5145abff53cbaf613f436c1490159fca1553185b01aa4d245ad0d29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page