Skip to main content

Tools for the generation and analysis of dislocation distributions.

Project description

Mines Saint-Etienne

Line Profile Analysis - Input

This repository is related to the analysis of crystals containing dislocations by X-ray diffraction. It is part of a project conducted during a research internship at the laboratory of material and structural sciences of the École Nationale Supérieure des Mines de Saint-Étienne. Three python packages have been developed to conduct line profile analyses based on simulation results:

  • lpa.input (line profile analysis input generator)
  • lpa.xrd (line profile analysis x-ray diffraction simulation program)
  • lpa.output (line profile analysis output analyzer)

Features

The package lpa.input can be used to:

  • generate dislocation distributions according to different models
  • export the distributions in standardized files for input to an X-ray diffraction simulation program
  • export the distributions in dislocation maps
  • export a spatial analysis of the distributions

Installation

The package is indexed on PyPI and installable directly via pip:

pip install -U lpa-input

Examples

Distribution maps

RDD RRDD-E

Input data files

# please keep the structure of this file unchanged
 1  1  0 # z: direction of 'l' (line vector) [uvw]
-1  1  0 # x: direction of 'L' (Fourier variable) [uvw]
 1  1  0 # b: Burgers vector direction [uvw]
 2  0  0 # g: diffraction vector direction (hkl)
0.250000 # C: contrast coefficient [1]
0.404940 # a: cell parameter [nm]
     400 # s: Cylinder radius [nm]
    11.8 # a3: step size of 'L' along x [nm]
   0.345 # nu: Poisson's number [1]
      25 # number of dislocations
# Burgers vector and dislocation (x,y) coordinates
 1 -1.61548011465209754078E+02 -1.87858054587866405427E+02
 1 -4.95321847603491747236E+01  3.96358615901232042233E+02
 1  3.83092997789296475730E+02  1.00863319641021547568E+02
 1  3.29405674347048261552E+02  3.43310242328645074394E+01
 1  1.24896256845976836303E+02 -2.97446481284809294721E+02
 1  2.83261500112922590233E+02 -1.72957796716792046254E+02
 1 -1.95525742141039444277E+02 -1.54910012577794219624E+02
 1 -1.88880305594950499426E+01 -1.45803577134339775512E+02
 1 -3.27077937109537572269E+02 -9.19682417317111031707E+01
 1  2.66132672811368365728E+02 -1.15022137253631683507E+02
 1  8.95788549895187458105E+01 -2.03995903949563853530E+02
 1  2.78766292014808357180E+02  4.79706674967438928547E+00
-1  2.35696079304986938041E+02 -2.94559691227597113539E+02
-1  3.78008065264777542325E+02  8.09744721982159489926E+01
-1 -3.05015488147403850405E+01 -2.37311792781886936154E+02
-1  1.36174901645258700000E+02  2.70002164951812687832E+02
-1  1.48116703651397642716E+02 -1.71931802385698262015E+02
-1 -2.97958976321769398510E+02 -7.94257720216477167696E+01
-1 -7.14523593672500396679E+01  2.21269872377589337020E+02
-1 -2.21359970901484132355E+02  1.16870883315733863128E+02
-1  3.71458286581792890502E+02  6.68029763594811925032E+01
-1  1.35411516921856758700E+02  1.34197377210817563764E+02
-1 -1.51035996503921097656E+02 -2.77305014216898598534E+02
-1 -6.97944269504084076061E+01 -9.25807374125183457636E+01
 1 -2.73203683148690629423E+02 -2.42038862868204574852E+02

Spatial analysis

Ripley’s K function Pair correlation function Symmetric and antisymmetric functions

Physical aspects

Two geometries are proposed:

  • circle (intersection of a plane with a cylinder) centered in (0, 0)
  • square (intersection of a plane with a cuboid) bottom left corner at (0, 0)

A dislocation associates:

  • a Burgers vector sense b
  • a position p

A distribution is mainly characterized by the following elements:

  • the shape of the region of interest
  • the model used for the random generation of dislocations
  • the generated dislocations

A sample is a set of distribution and is mainly characterized by:

  • the number of generated distribution stored
  • the shape of the region of interest
  • the model used for the random generation of dislocations
  • the stored distributions

Abbreviations

Some abbreviations are used in the program:

Models

  • RDD random dislocation distribution
  • RRDD restrictedly random dislocation distribution
  • RCDD random cell dislocation distribution

Model variants

  • R randomly distributed Burgers vectors
  • E evenly distributed Burgers vectors
  • D dipolar Burgers vectors

Boundary conditions

  • PBCG periodic boundary conditions applied when generating the distribution
  • PBCR periodic boundary conditions applied when running the simulation
  • IDBC image dislocations boundary conditions

User guide

The directory tests/ contains several examples of package module usage. The docstrings are carefully written and it is recommended to refer to the documentation with the help() command.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lpa-input-0.9.19.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

lpa_input-0.9.19-py3-none-any.whl (27.7 kB view details)

Uploaded Python 3

File details

Details for the file lpa-input-0.9.19.tar.gz.

File metadata

  • Download URL: lpa-input-0.9.19.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lpa-input-0.9.19.tar.gz
Algorithm Hash digest
SHA256 e2652096fce673a738a3e75169e0a02a1eb306be2216f120da2fa21a76e0274c
MD5 e919bb16597788fd6da983e1b63f03b3
BLAKE2b-256 ae26a6874936931646c048874f8e655d257e4d0a0d29450259e702977dddc71b

See more details on using hashes here.

File details

Details for the file lpa_input-0.9.19-py3-none-any.whl.

File metadata

  • Download URL: lpa_input-0.9.19-py3-none-any.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lpa_input-0.9.19-py3-none-any.whl
Algorithm Hash digest
SHA256 9e90e55060298b069266251db479ca1a0738666c934c4929c92f02962ef56ec9
MD5 284eb88970021a7b624172070f98f3d6
BLAKE2b-256 1e17649fd42cae9f7967d2dd8ed271b46d66aa11b8310e43ad829c9f00d97f92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page