A fast Python 3 implementation of locality sensitive hashing with persistance support.
Project description
LSHash
- Version:
0.0.6
- Python:
3.7.7
A fast Python implementation of locality sensitive hashing with persistance support.
Based on original source code https://github.com/kayzhu/LSHash
Highlights
Python3 support
Load & save hash tables to local disk
Fast hash calculation for large amount of high dimensional data through the use of numpy arrays.
Built-in support for persistency through Redis.
Multiple hash indexes support.
Built-in support for common distance/objective functions for ranking outputs.
Installation
LSHash depends on the following libraries:
numpy
bitarray (if hamming distance is used as distance function)
Optional - redis (if persistency through Redis is needed)
To install from sources:
$ git clone https://github.com/loretoparisi/lshash.git
$ python setup.py install
To install from PyPI:
$ pip install lshashpy3
$ python -c "import lshashpy3 as lshash; print(lshash.__version__);"
Quickstart
To create 6-bit hashes for input data of 8 dimensions:
# create 6-bit hashes for input data of 8 dimensions:
lsh = LSHash(6, 8)
# index vector
lsh.index([2,3,4,5,6,7,8,9])
# index vector and extra data
lsh.index([10,12,99,1,5,31,2,3], extra_data="vec1")
lsh.index([10,11,94,1,4,31,2,3], extra_data="vec2")
# query a data point
top_n = 1
nn = lsh.query([1,2,3,4,5,6,7,7], num_results=top_n, distance_func="euclidean")
print(nn)
# unpack vector, extra data and vectorial distance
top_n = 3
nn = lsh.query([10,12,99,1,5,30,1,1], num_results=top_n, distance_func="euclidean")
for ((vec,extra_data),distance) in nn:
print(vec, extra_data, distance)
To save hash table to disk:
lsh = LSHash(hash_size=k, input_dim=d, num_hashtables=L,
storage_config={ 'dict': None },
matrices_filename='weights.npz',
hashtable_filename='hash.npz',
overwrite=True)
lsh.index([10,12,99,1,5,31,2,3], extra_data="vec1")
lsh.index([10,11,94,1,4,31,2,3], extra_data="vec2")
lsh.save()
To load hash table from disk and perform a query:
lsh = LSHash(hash_size=k, input_dim=d, num_hashtables=L,
storage_config={ 'dict': None },
matrices_filename='weights.npz',
hashtable_filename='hash.npz',
overwrite=True)
top_n = 3
nn = lsh.query([10,12,99,1,5,30,1,1], num_results=top_n, distance_func="euclidean")
print(nn)
API
To initialize a LSHash instance:
k = 6 # hash size
L = 5 # number of tables
d = 8 # Dimension of Feature vector
LSHash(hash_size=k, input_dim=d, num_hashtables=L,
storage_config={ 'dict': None },
matrices_filename='weights.npz',
hashtable_filename='hash.npz',
overwrite=True)
parameters:
- hash_size:
The length of the resulting binary hash.
- input_dim:
The dimension of the input vector.
- num_hashtables = 1:
(optional) The number of hash tables used for multiple lookups.
- storage = None:
(optional) Specify the name of the storage to be used for the index storage. Options include “redis”.
- matrices_filename = None:
(optional) Specify the path to the .npz file random matrices are stored or to be stored if the file does not exist yet
- hashtable_filename = None:
(optional) Specify the path to the .npz file hash table are stored or to be stored if the file does not exist yet
- overwrite = False:
(optional) Whether to overwrite the matrices file if it already exist
To index a data point of a given LSHash instance, e.g., lsh:
lsh.index(input_point, extra_data=None):
parameters:
- input_point:
The input data point is an array or tuple of numbers of input_dim.
- extra_data = None:
(optional) Extra data to be added along with the input_point.
To query a data point against a given LSHash instance, e.g., lsh:
lsh.query(query_point, num_results=None, distance_func="euclidean"):
parameters:
- query_point:
The query data point is an array or tuple of numbers of input_dim.
- num_results = None:
(optional) The number of query results to return in ranked order. By default all results will be returned.
- distance_func = "euclidean":
(optional) Distance function to use to rank the candidates. By default “euclidean” distance function will be used. Distance function can be “euclidean”, “true_euclidean”, “centred_euclidean”, “cosine”, “l1norm”.
To save the hash table currently indexed:
lsh.save():
- Version:
0.0.6
- Python:
3.7.7
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lshashpy3-0.0.7.tar.gz
.
File metadata
- Download URL: lshashpy3-0.0.7.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b040df71d40b692f8184fb2378e5eea017847bcfdcae09f2bb0c50447130e42d |
|
MD5 | 2b0c7420a657784dfdae762e46520646 |
|
BLAKE2b-256 | c95ac561701c2c0d8524a71b92b5221a255728e501870ca247d7c78876d29d68 |
File details
Details for the file lshashpy3-0.0.7-py3.7.egg
.
File metadata
- Download URL: lshashpy3-0.0.7-py3.7.egg
- Upload date:
- Size: 15.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6e3051d92fb8763e851ce4458bb9d0ea30f639ff0db1d270dae5026fc27cf96b |
|
MD5 | 39e2e31627cb84c25dbcf12d94c8487d |
|
BLAKE2b-256 | 1c08de278474be444fb6c2b2f2e5ef382ec1c54cf1de732e338950bc96782a24 |