Data structures used in the LUME modeling toolset.
Project description
LUME-model
LUME-model holds data structures used in the LUME modeling toolset. Variables and models built using LUME-model will be compatible with other tools. LUME-model uses pydantic models to enforce typed attributes upon instantiation.
Requirements
- Python >= 3.9
- pydantic
- numpy
Install
LUME-model can be installed with conda using the command:
$ conda install lume-model -c conda-forge
Developer
A development environment may be created using the packaged dev-environment.yml
file.
conda env create -f dev-environment.yml
Variables
The lume-model variables are intended to enforce requirements for input and output variables by variable type. For now, only scalar variables (floats) are supported.
Minimal example of scalar input and output variables:
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable
input_variable = ScalarInputVariable(
name="example_input",
default=0.1,
value_range=[0.0, 1.0],
)
output_variable = ScalarOutputVariable(name="example_output")
All input variables may be made into constants by passing the is_constant=True
keyword argument. Value assingments on these constant variables will raise an error message.
Models
The lume-model base class lume_model.base.LUMEBaseModel
is intended to guide user development while allowing for flexibility and customizability. It is used to enforce LUME tool compatible classes for the execution of trained models.
Requirements for model classes:
- input_variables: A list defining the input variables for the model. Variable names must be unique. Required for use with lume-epics tools.
- output_variables: A list defining the output variables for the model. Variable names must be unique. Required for use with lume-epics tools.
- evaluate: The evaluate method is called by the serving model. Subclasses must implement this method, accepting and returning a dictionary.
Example model implementation and instantiation:
from lume_model.base import LUMEBaseModel
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable
class ExampleModel(LUMEBaseModel):
def evaluate(self, input_dict):
output_dict = {
"output1": input_dict[self.input_variables[0].name] ** 2,
"output2": input_dict[self.input_variables[1].name] ** 2,
}
return output_dict
input_variables = [
ScalarInputVariable(name="input1", default=0.1, value_range=[0.0, 1.0]),
ScalarInputVariable(name="input2", default=0.2, value_range=[0.0, 1.0]),
]
output_variables = [
ScalarOutputVariable(name="output1"),
ScalarOutputVariable(name="output2"),
]
m = ExampleModel(input_variables=input_variables, output_variables=output_variables)
Configuration files
Models and variables may be constructed using a YAML configuration file. The configuration file consists of three sections:
- model (optional, can alternatively pass a custom model class into the
model_from_yaml
method) - input_variables
- output_variables
The model section is used for the initialization of model classes. The model_class
entry is used to specify the model class to initialize. The model_from_yaml
method will attempt to import the specified class. Additional model-specific requirements may be provided. These requirements will be checked before model construction. Model keyword arguments may be passed via the config file or with the function kwarg model_kwargs
. All models are assumed to accept input_variables
and output_variables
as keyword arguments.
For example, m.dump("example_model.yml")
writes the following to file
model_class: ExampleModel
input_variables:
input1:
variable_type: scalar
default: 0.1
is_constant: false
value_range: [0.0, 1.0]
input2:
variable_type: scalar
default: 0.2
is_constant: false
value_range: [0.0, 1.0]
output_variables:
output1: {variable_type: scalar}
output2: {variable_type: scalar}
and can be loaded by simply passing the file to the model constructor:
from lume_model.base import LUMEBaseModel
class ExampleModel(LUMEBaseModel):
def evaluate(self, input_dict):
output_dict = {
"output1": input_dict[self.input_variables[0].name] ** 2,
"output2": input_dict[self.input_variables[1].name] ** 2,
}
return output_dict
m = ExampleModel("example_model.yml")
PyTorch Toolkit
In the same way as the KerasModel, a PyTorchModel can also be loaded using the lume_model.utils.model_from_yaml
method, specifying PyTorchModel
in the model_class
of the configuration file.
model:
kwargs:
model_file: /path/to/california_regression.pt
model_class: lume_model.torch.PyTorchModel
model_info: path/to/model_info.json
output_format:
type: tensor
requirements:
torch: 1.12
In addition to the model_class, we also specify the path to the pytorch model (saved using torch.save()
) and additional information about the model through the model_info.json
file such as the order of the feature names and outputs of the model:
{
"train_input_mins": [
0.4999000132083893,
...
-124.3499984741211
],
"train_input_maxs": [
15.000100135803223,
...
-114.30999755859375
],
"model_in_list": [
"MedInc",
...
"Longitude"
],
"model_out_list": [
"MedHouseVal"
],
"loc_in": {
"MedInc": 0,
...
"Longitude": 7
},
"loc_out": {
"MedHouseVal": 0
}
}
The output_format
specification indicates which form the outputs of the model's evaluate()
function should take, which may vary depending on the application. PyTorchModels working with the LUME-EPICS service will require an OutputVariable
type, while Xopt requires either a dictionary of float values or tensors as output.
It is important to note that currently the transformers are not loaded into the model when using the model_from_yaml
method. These need to be created separately and added either:
- to the model's
kwargs
before instantiating
import torch
import json
from lume_model.torch import PyTorchModel
# load the model class and kwargs
with open(f"california_variables.yml","r") as f:
yaml_model, yaml_kwargs = model_from_yaml(f, load_model=False)
# construct the transformers
with open("normalization.json", "r") as f:
normalizations = json.load(f)
input_transformer = AffineInputTransform(
len(normalizations["x_mean"]),
coefficient=torch.tensor(normalizations["x_scale"]),
offset=torch.tensor(normalizations["x_mean"]),
)
output_transformer = AffineInputTransform(
len(normalizations["y_mean"]),
coefficient=torch.tensor(normalizations["y_scale"]),
offset=torch.tensor(normalizations["y_mean"]),
)
model_kwargs["input_transformers"] = [input_transformer]
model_kwargs["output_transformers"] = [output_transformer]
model = PyTorchModel(**model_kwargs)
- using the setters for the transformer attributes in the model.
# load the model
with open("california_variables.yml", "r") as f:
model = model_from_yaml(f, load_model=True)
# construct the transformers
with open("normalization.json", "r") as f:
normalizations = json.load(f)
input_transformer = AffineInputTransform(
len(normalizations["x_mean"]),
coefficient=torch.tensor(normalizations["x_scale"]),
offset=torch.tensor(normalizations["x_mean"]),
)
output_transformer = AffineInputTransform(
len(normalizations["y_mean"]),
coefficient=torch.tensor(normalizations["y_scale"]),
offset=torch.tensor(normalizations["y_mean"]),
)
# use the model's setter to add the transformers. Here we use a tuple
# to tell the setter where in the list the transformer should be inserted.
# In this case because we only have one, we add them at the beginning
# of the lists.
model.input_transformers = (input_transformer, 0)
model.output_transformers = (output_transformer, 0)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for lume_model-1.7.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 516132b5a5c1736b3126d9bd5e8efa46de2c6ed4dffacedd7dfc4e3c35309029 |
|
MD5 | 5b4748242aa292307266b9c3b2a2990b |
|
BLAKE2b-256 | fb21aed4915d6ea56225a3ee6be1b0225a579add23ea1cccbb282d42e62a90ef |