Skip to main content

Galaxian Luminosity Function Constructor package using the 1/Vmax estimator and Schechter model.

Project description

Luminosity Function Constructor and Modeller

This package allows the user to construct and model Galaxian Luminosity Functions using the 1/Vmax estimator and Schechter function.

PyPI PyPI - Python Version PyPI - Downloads GitHub issues GitHub stars GitHub forks GitHub license

Installation

Use the package manager pip to install lumfunc.

pip install lumfunc

Keep the package up to date to access all commands.

pip install --upgrade lumfunc

Usage

Import the module in your Python code.

import lumfunc as lf

Load the catalogued data from survey. Usually stored in .fits or .csv files.

import numpy as np
import pandas as pd

# test data (photometric galaxian survey)
data_table = pd.read_csv('test_catalogue.csv')
RA_list = np.array(data_table['RA'])
Dec_list = np.array(data_table['Dec'])
g_app_mag_list = np.array(data_table['g_mag'])
r_app_mag_list = np.array(data_table['r_mag'])
r_app_mag_err_list = np.array(data_table['r_mag_err'])
z_photo_list = np.array(data_table['z_photo'])

1. K-correction and Malmquist bias reduction:

get_maggy( ): Convert the measurements of flux in magnitudes to maggies for use with kcorrect_python

Return maggies from magnitudes.

r_maggies_list = lf.get_maggy(r_app_mag_list) 
print(r_maggies_list[0:4])
# returns 
# [2.17126084e-08 1.88972757e-08 9.39864400e-09 3.74726494e-08]

# rudimentarily:
lf.get_maggy(np.array([19.15822, 19.309002, 20.067337, 18.565714]))
# returns
# array([12.17126084e-08, 1.88972757e-08, 9.39864400e-09, 3.74726494e-08])

get_maggy_inv_var( ): Convert the magnitude errors to maggy inverse variances for use with kcorrect_python

Return maggy inverse variances from maggies and magnitude errors.

r_maggy_inv_var_list = lf.get_maggy_inv_var(r_maggies_list, r_app_mag_err_list)
print(r_maggy_inv_var_list[0:4])
# returns 
# [2.61353653e+20 2.21539925e+20 2.63295704e+20 1.52030876e+20]

# rudimentarily:
lf.get_maggy_inv_var(
    np.array([2.17126084e-08, 1.88972757e-08, 9.39864400e-09, 3.74726494e-08]),
    np.array([0.00309313, 0.0038601, 0.0071193, 0.00234987]))
# returns
# array([2.61353484e+20, 2.21540499e+20, 2.63295631e+20, 1.52031005e+20])

get_rest_mag( ): Convert the measured apparent magnitudes into rest-frame magnitudes using the catalogue data and output from kcorrect_python functions

Load maggy ratios output file from kcorrect_python.

maggy_ratios_table = pd.read_csv('test_maggy_ratios.csv', delimiter=' ')
r_maggy_ratio_list = np.array(maggy_ratios_table['maggy_ratio'])

Return rest-frame magnitudes from the apparent magnitudes, redshifts and maggy ratios.

r_rest_mag_list = lf.get_rest_mag(z_photo_list, r_app_mag_list, r_maggy_ratio_list)
print(r_rest_mag_list[0:4])
# returns 
# [-22.50048222 -20.3671756  -23.61190368 -23.75133511]

# rudimentarily:
lf.get_rest_mag(np.array([0.34, 0.17, 0.61, 0.41]),
                np.array([19.15822, 19.309002, 20.067337, 18.565714]),
                np.array([0.69938735, 0.90226577, 0.43780755, 0.59193305]))
# returns
# array([-22.50048222, -20.3671756 , -23.61190369, -23.75133512])

get_volume( ): Convert the survey area in square degrees and respective redshift of each data point into comoving volumes. So, estimate Vmax from Zmax values

Load the zmax file.

zmax_table = pd.read_csv('test_zmax.csv', delimiter=' ')
z_max_list = np.array(zmax_table['zmax'])

Return comoving volume from the survey area and redshifts.

survey_area = 2.5 #sq. degrees
Vmax_list = lf.get_volume(survey_area, z_max_list)
print(Vmax_list[:4])
# returns 
# [1756716.17902236  178625.22666027 2447025.54638078 2287569.96087901]

# rudimentarily:
lf.get_volume(2.5, np.array([0.50523681, 0.21884399, 0.57489149, 0.55985663]))
# returns
# array([1756716.14859094,  178625.22895137, 2447025.56779186, 2287569.99514156])

get_binned_phi( ): Bin and weigh galaxy counts per magnitude by :"1/Vmax"

Return M, M errors and phi from the rest-frame magnitudes, Vmax values and number of bins.

n_bins = 10
M_list, M_err_list, phi_list = lf.get_binned_phi(r_rest_mag_list, Vmax_list, n_bins)
print(M_list)
# returns
# [-25.1487769  -23.86987184 -22.59096677 -21.31206171 -20.03315665
#  -18.75425159 -17.47534652 -16.19644146 -14.9175364  -13.63863134]
print(M_err_list)
# returns
# [0.63945253 0.63945253 0.63945253 0.63945253 0.63945253 
#  0.63945253 0.63945253 0.63945253 0.63945253 0.63945253]
print(phi_list)
# returns 
# [2.78118218e+02 2.54476157e+02 6.57347457e-05 1.98257155e-04 4.84943102e-04 
#  1.02149157e-03 1.49165665e-03 4.54012724e-03 5.08195775e-03 6.14432455e-02]

# OR a rudimentarily example:
lf.get_binned_phi(
    np.array([-23, -21, -19, -22, -23, -23, -22, -23, -22, -22, -19, -21]),
    np.array([
        8e+08, 2e+08, 2e+07, 3e+08, 6e+08, 6e+08, 4e+08, 7e+08, 5e+08, 6e+08,
        7e+06, 1e+08
    ]), 4)
# returns 
# (array([-22.5, -21.5, -20.5, -19.5]),
#  array([0.5, 0.5, 0.5, 0.5]),
#  array([1.06411667e-08, 1.02900000e-08, 0.00000000e+00, 1.32300000e-07]))

2. Spatial variances of the phi, phi, values:

get_patch_centers( ): First, divide uniformly and randomly simulated data points over the survey area into equally distributed and equally sized patches

Load RA and Dec from uniformly distributed catalogue.

Return patch centers as (RA, Dec) from the uniform RA, Dec and number of patches.

n_patches = 10
centers_array = lf.get_patch_centers(uniform_RA_list,
                                     uniform_Dec_list,
                                     n_patches,
                                     survey='kids',
                                     max_iterations=int(100),
                                     tolerance=1.0e-1)
print(centers_array)
# returns
# [[ 2.23297633e+02  9.81275815e-01]
#  [ 2.23193101e+02  2.50219646e+00]
#  [ 2.23213260e+02  3.28612546e-01]
#  [ 2.23265647e+02 -1.95982283e-01]
#  [ 2.23186387e+02  1.42541364e+00]
#  [ 2.23225546e+02 -7.99113067e-01]
#  [ 2.23204490e+02 -1.56123960e+00]
#  [ 2.23300703e+02  2.86857892e+00]
#  [ 2.23160532e+02  6.87340764e-01]
#  [ 2.23235093e+02  2.00605106e+00]]

get_patch_labels( ): Then, use the patch centers to label the survey data points by equally distributed and equally sized patches

Return patch labels for each data point from RA, Dec, number of patches and patch center guesses.

labels = lf.get_patch_labels(RA_list,
                             Dec_list,
                             n_patches,
                             centers_array,
                             survey='kids',
                             numba_installed=True,
                             plot_savename='test_patches.png')
# displays plot

get_patch_labels

get_binned_phi_error( ): Finally, use the patch labels to compute the spatial variances of phi

Return error on phi from rest-frame magnitude, maximum observed volume, labels, number of patches and number of bins.

phi_err_list = lf.get_binned_phi_error(r_rest_mag_list, Vmax_list, labels, 10, 10)
print(phi_err_list)
# returns
# [6.31512459e+02 5.32152268e+02 4.31666309e-05 2.22841109e-04 4.81148550e-04 
#  3.16386417e-04 6.52443936e-04 4.68698737e-03 2.05929233e-03 1.60744165e-01]

3. Visualisation:

get_plot( ): Perform get_binned_phi() , get_patch_labels() and get_binned_phi_error() functions using only one composite function and visualise the luminsoity function

Plot the 1/Vmax weighted luminosity function, binned by magnitude.

M_list, M_err_list, phi_list, phi_err_list = lf.get_plot(
    r_rest_mag_list,
    Vmax_list,
    n_bins,
    RA_list,
    Dec_list,
    n_patches,
    centers_array,
    survey='kids',
    numba_installed=True,
    plot_savename='test_LF.png')

# displays plot

get_plot

filter_plot_by_colour( ): Study the luminosity function by colour properties by specifying the colour dichotomy

Calculate rest-frame magnitudes in a higher wavelength band.

maggy_ratios_table = pd.read_csv('test_g_maggy_ratios.csv', delimiter=' ')
g_maggy_ratio_list = np.array(maggy_ratios_table['maggy_ratio'])
g_rest_mag_list = lf.get_rest_mag(z_photo_list, g_app_mag_list, g_maggy_ratio_list)

Plot the 1/Vmax weighted luminosity function from data, binned by magnitude and filtered by galaxy colours. The galaxy colours are filtered by red and blue with the help of the input colour dichotomy line parameters. The colour dichotomy line parameters must be inferred first from a CMD plot.

colour_cut_slope = 0.0
colour_cut_intercept = 0.65
all_M_list, all_M_err_list, all_phi_list, all_phi_err_list, red_M_list, red_M_err_list, red_phi_list, red_phi_err_list, blue_M_list, blue_M_err_list, blue_phi_list, blue_phi_err_list = lf.filter_plot_by_colour(
    colour_cut_slope,
    colour_cut_intercept,
    r_rest_mag_list,
    g_rest_mag_list,
    Vmax_list,
    n_bins,
    RA_list,
    Dec_list,
    n_patches,
    centers_array,
    survey='kids',
    numba_installed=True,
    plot_savename='test_LF_colour.png')

# displays plot

filter_plot_by_colour

4. Modelling with Schechter functions:

SchechterMagModel( )

Return single Schechter luminosity function in terms of magnitude from 3 free parameters of the model.

M_star_guess = -20.7
phi_star_guess = 9.5e-3
alpha_guess = -1.3
sch1_model_phi_list = lf.SchechterMagModel(M_list, M_star_guess, phi_star_guess, alpha_guess)
print(sch1_model_phi_list)
# returns
# [1.85685848e-29 3.25671139e-11 1.72458831e-05 1.27468679e-03 6.12395219e-03 
#  1.26803536e-02 2.02617665e-02 2.98927403e-02 4.30310959e-02 6.14770530e-02]

DoubleSchechterMagModel( )

Return double Schechter luminosity function in terms of magnitude from 5 free parameters of the model.

M_star_guess = -20.7
phi_star_1_guess = 6.16e-3
alpha_1_guess = -0.79
phi_star_2_guess = 6.16e-3
alpha_2_guess = -0.79
sch2_model_phi_list = lf.DoubleSchechterMagModel(M_list, M_star_guess,
                                                 phi_star_1_guess,
                                                 alpha_1_guess,
                                                 phi_star_2_guess,
                                                 alpha_2_guess)
print(sch2_model_phi_list)
# returns
# [1.94632963e-28 1.87206201e-10 5.43662983e-05 2.20369342e-03 5.80607779e-03 
#  6.59304119e-03 5.77743541e-03 4.67441094e-03 3.69017477e-03 2.89121864e-03]

get_gof( ): Estimate the goodness of the fit by the reduced chi square, redchisq

Returns reduced chi squared estimate of goodness of fit from observed values, modelled values, errors and number of free parameters used in model.

m = 3
gof = lf.get_gof(phi_list, phi_err_list, sch1_model_phi_list, m)
print(gof)
# returns
# 79.66254082924551

get_schechter_phi( ): Least square fit single Schechter function on data and plot

Returns least square fit of phi with single Schechter function, reduced chi squared estimate and the 3 Schechter parameters with their errors.

sch1_model_phi_list, chi_sq_1, M_star, M_star_err, phi_star, phi_star_err, alpha_star, alpha_star_err = lf.get_schechter_phi(
    M_list,
    M_err_list,
    all_phi_list,
    all_phi_err_list,
    np.array([M_star_guess, phi_star_guess, alpha_guess]),
    plot_savename='test_Sch.png')

# displays plot

get_schechter_phi

get_double_schechter_phi( ): Least square fit double Schechter function on data and plot

Returns least square fit of phi with double Schechter function, reduced chi squared estimate and the 5 Schechter parameters with their errors.

sch2_model_phi_list, chi_sq_1, M_star, M_star_err, phi_star_1, phi_star_err_1, phi_star_2, phi_star_err_2, alpha_star_1, alpha_star_err_1, alpha_star_2, alpha_star_err_2 = lf.get_double_schechter_phi(
    M_list,
    M_err_list,
    all_phi_list,
    all_phi_err_list,
    np.array([M_star_guess, phi_star_1_guess, alpha_1_guess, phi_star_2_guess, alpha_2_guess]),
    plot_savename='test_dSch.png')

# displays plot

get_double_schechter_phi

Dependencies

PyPI PyPI PyPI PyPI https://github.com/nirinA/kcorrect_python

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lumfunc-1.0.0.tar.gz (3.1 MB view details)

Uploaded Source

Built Distribution

lumfunc-1.0.0-py3-none-any.whl (16.8 kB view details)

Uploaded Python 3

File details

Details for the file lumfunc-1.0.0.tar.gz.

File metadata

  • Download URL: lumfunc-1.0.0.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for lumfunc-1.0.0.tar.gz
Algorithm Hash digest
SHA256 019700fbf84b72b478bc51613e7e8b839518170bc26ae9978b77b04411ce3f1e
MD5 65ad2cbfcfe387c9d58a1628f3e6ff3b
BLAKE2b-256 c64beecc741d91f2356f4e4a08cc86a48a53870db25ddf93c4a37d88a8f345bc

See more details on using hashes here.

File details

Details for the file lumfunc-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: lumfunc-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 16.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for lumfunc-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7a70b32de90e69860446d960d26dea53c3bd0e504a01f9169941d4b85b291a22
MD5 6c54cf75a2a53a0d11efb204bcd5cc8a
BLAKE2b-256 93a42276b1f49308344e154fbda133953ac86bdf5f08487adf2f69e92bcb620b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page