MadAnalysis 5 interpreter for Expert mode
Project description
MadAnalysis 5 Interpreter For Expert Mode
MadAnalysis 5 output interpreter for expert mode. Parses the cutflow collection and constructs it with an interactable interface (histogram interpreter coming soon).
Installation
pip install ma5-expert
Cutflow Collection
- Parse all the signal regions and construct an object-base, interactable cutflow.
- Write combined LaTeX tables for different samples.
- Compare samples and construct validation tables which allow you to calculate the difference of the relative efficiencies for each given sample with respect to a reference sample.
- Compare signal and background samples and calculate the figure of merit.
- Possibility to include experimentally available cutflow data and compare it against MadAnalysis 5 cutflow output.
- Calculate Monte Carlo uncertainty per cut on the fly
Examples can be found in examples folder.
- Simple cutflow:
CutFlowCollection
needs CutFlows
path of your sample in MadAnalysis 5 Analysis folder.
We provide an ma5 directory in examples
folder so we will go through and the code using that.
Parsing a cutflow simply requires the path of the CutFlows
folder and optionally xsection
[pb], lumi
[1/fb]
and/or Nevents
. Note that xsec
overwrites the number of events option, if provided number of events
are always calculated using the cross section.
import ma5_expert as ma5
sample = ma5.cutflow.Collection(
"examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Cutflows",
xsection=5.689, lumi=139.
)
Here the first input is the path of the CutFlows
folder and the rest are simply cross section and
luminosity information. One can see the signal regions by simply printing the keys
of the CutFlowCollection
object;
print(sample.SRnames)
# Output:
# ['SRC_28', 'SRA_M', 'SRA_L', 'SRA_H', 'SRA', 'SRC', 'SRB', 'SRC_26', 'SRC_24', 'SRC_22']
Each signal region is accessible through CutFlowCollection
object. For instance one can get the names of
the cuts applied in one of the signal regions.
print(sample.SRA.CutNames)
# Output:
# ['Initial', '$N_{lep} = 0$', '$N_{j} \\geq 6$', '$N_{b} \\geq 4$',
# '$\\slashed{E}_T > 350$ [GeV]', '$min(\\Delta\\phi(j_{1-4},\\slashed{E}_T))>0.4$ [rad]',
# '$\\tau^h$ veto', '$p^{b_1}_T > 200$ [GeV]', '$\\Delta R_{max}(b,b)>2.5$',
# '$\\Delta R_{max-min}(b,b)<2.5$', '$m(h_{cand})>80$ [GeV]', '$m_{eff} > 1$ [TeV]']
Or simply print the entire cutflow;
print(sample.SRA)
# Output:
# * SRA :
# * Initial :
# - Number of Entries : 200000
# - Number of Events : 790771.000 ± 0.000(ΔMC)
# - Cut & Rel Efficiency : 1.000, 1.000
# * $N_{lep} = 0$ :
# - Number of Entries : 156651
# - Number of Events : 499908.962 ± 609.064(ΔMC)
# - Cut & Rel Efficiency : 0.632, 0.632
# * $N_{j} \geq 6$ :
# - Number of Entries : 65546
# - Number of Events : 209971.179 ± 362.184(ΔMC)
# - Cut & Rel Efficiency : 0.266, 0.420
# * $N_{b} \geq 4$ :
# - Number of Entries : 19965
# - Number of Events : 63883.202 ± 123.205(ΔMC)
# - Cut & Rel Efficiency : 0.081, 0.304
# * $\slashed{E}_T > 350$ [GeV] :
# - Number of Entries : 191
# - Number of Events : 755.117 ± 1.688(ΔMC)
# - Cut & Rel Efficiency : 0.001, 0.012
# * $min(\Delta\phi(j_{1-4},\slashed{E}_T))>0.4$ [rad] :
# - Number of Entries : 72
# - Number of Events : 284.658 ± 0.636(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.377
# * $\tau^h$ veto :
# - Number of Entries : 68
# - Number of Events : 268.850 ± 0.601(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.944
# * $p^{b_1}_T > 200$ [GeV] :
# - Number of Entries : 33
# - Number of Events : 130.474 ± 0.292(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.485
# * $\Delta R_{max}(b,b)>2.5$ :
# - Number of Entries : 25
# - Number of Events : 98.836 ± 0.221(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.758
# * $\Delta R_{max-min}(b,b)<2.5$ :
# - Number of Entries : 25
# - Number of Events : 98.836 ± 0.221(ΔMC)
# - Cut & Rel Efficiency : 0.000, 1.000
# * $m(h_{cand})>80$ [GeV] :
# - Number of Entries : 10
# - Number of Events : 39.543 ± 0.088(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.400
# * $m_{eff} > 1$ [TeV] :
# - Number of Entries : 10
# - Number of Events : 39.543 ± 0.088(ΔMC)
# - Cut & Rel Efficiency : 0.000, 1.000
As can be seen, it shows number of entries (MonteCarlo events), number of events (lumi weighted), cut efficiency and relative efficiency. The error in number of events is the MonteCarlo uncertainty.
It is also possible to access practical information
print(sample.SRA.isAlive)
# Output: True
which simply checks the number of entries in the final cut. Hence one can remove the SRs which does not have any statistics;
alive = sample.get_alive()
print(f"Number of cutflows survived : {len(alive)},\nNames of the cutflows : { ', '.join([x.id for x in alive]) }")
# Output:
# Number of cutflows survived : 8,
# Names of the cutflows : SRA_M, SRA_L, SRA_H, SRA, SRC, SRB, SRC_24, SRC_22
Each cut is accessible through the interface;
fifth = sample.SRA[5]
print(f"Efficiency : {fifth.eff:.3f}, Relative MC efficiency {fifth.mc_rel_eff:.3f}, number of events {fifth.Nevents:.1f}, sum of weights {fifth.sumW:.3f}")
# Output:
# Efficiency : 0.0004, Relative MC efficiency 0.377, number of events 284.7, sum of weights 0.008
One can also construct independent signal regions for sake of comparisson with Ma5 results;
SRA_presel = [319.7,230.5,192.3,87.9,45.1,20.9,19.3,18.2,17.6,15.0,13.7]
ATLAS = ma5.cutflow.Collection()
ATLAS.addSignalRegion('SRA', ma5.SRA.CutNames, SRA_presel+[13.7])
ATLAS.addSignalRegion('SRA_L', ma5.SRA_L.CutNames, SRA_presel+[0.4])
ATLAS.addSignalRegion('SRA_M', ma5.SRA_M.CutNames, SRA_presel+[6.4])
ATLAS.addSignalRegion('SRA_H', ma5.SRA_H.CutNames, SRA_presel+[7.0])
where all properties shown above applies to this new object as well.
Citation
Developed for arXiv:2006.09387
@article{Araz:2020lnp,
author = "Araz, Jack Y. and Fuks, Benjamin and Polykratis, Georgios",
title = "{Simplified fast detector simulation in MADANALYSIS 5}",
eprint = "2006.09387",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1140/epjc/s10052-021-09052-5",
journal = "Eur. Phys. J. C",
volume = "81",
number = "4",
pages = "329",
year = "2021"
}
TODO
-
Clean cutflow reader needs optimization and clarity
-
Generalize table writer and add latex writer
-
Histogram reader
-
Overall Ma5 Analysis parser
-
Some experimental analysis requires MC event comparison table. This needs to be added.
-
Combine collections with + operator and normalize to a certain luminosity with * operator.
-
Add MC uncertainties
-
Add theoretical uncertainties
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for ma5_expert-1.0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6dc455886b94fdb4a7a42506689914bb8f2e0d9f1623cc451e96fab459c5d60 |
|
MD5 | c92b37d3bf69d81a1e061e72ce06f8a5 |
|
BLAKE2b-256 | 4b05876080b2d2c7fc38b6f1ca0d862e1d7e486106d3f24e6dc968907d940a6b |