Generate synthetic data for computer vision projects using copy-paste context-augmentation.
Project description
Magic Scissors ✂️
Generate synthetic data for computer vision using copy-paste context augmentation.
Magic Scissors is available as a Python package and a web application.
Installation
To install Magic Scissors, run the following command:
pip install magicscissors
Quickstart 🚀
To use Magic Scissors, you need two datasets:
- A dataset with object of interest;
- A dataset with backgrounds on which objects of interest can be pasted.
Both datasets should be formatted as COCO JSON. You can convert data between formats using Roboflow.
from magic_scissors import MagicScissors
data = MagicScissors(
dataset_size=100,
min_objects_per_image=1,
max_objects_per_image=3,
min_size_variance=2,
max_size_variance=5,
annotate_occlusion=0,
working_dir="./",
upload_to_roboflow=False,
roboflow_api_key="",
roboflow_workspace="",
roboflow_project="",
)
# load data from COCO JSON files
data.load_backgrounds_from_coco()
data.load_objects_of_interest_from_coco()
# load data from Roboflow
data.download_objects_of_interest_from_roboflow(
dataset_url=""
)
data.download_backgrounds_from_roboflow(
dataset_url=""
)
# generate dataset and save to directory
data.generate_dataset()
Contributing 🏆
We would love your help improving Magic Scissors! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!
License
This project is licensed under an MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file magic-scissors-0.1.0.tar.gz
.
File metadata
- Download URL: magic-scissors-0.1.0.tar.gz
- Upload date:
- Size: 8.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0864be26e0165bf381481768084606957c616478b13500d298c55c2664cbbe32 |
|
MD5 | 1814b11cbcab38132fe8dfb4368d0b30 |
|
BLAKE2b-256 | fd6a0a779f57ca992795ea5cff59028f2aa7ed176dedb7274cf9197740b21001 |
File details
Details for the file magic_scissors-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: magic_scissors-0.1.0-py3-none-any.whl
- Upload date:
- Size: 7.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bba3cae1bec89345a82152df8a058fb187cdfad1112e06407483cd0b5c1909e3 |
|
MD5 | 85e429dee5162546624e0535b56e1078 |
|
BLAKE2b-256 | c98b3c23bc7d04e8c482653c16fb0af323be9fff058127b3315e3c132af62a98 |