Skip to main content

MagicO - enabling attribute notation and JSONPath

Project description

MagicO - enabling attribute notation and JSONPath

MagicO (Magic Object) allows you to access a dict, list, or tuple Python object using the attribute notation or a JSONPath.

For example, given the following data object:

my_data = {
    "a": 1,
    "b": {
        "c": 3,
        "d": (4, 5)
    },
    "e": [
        {"f": 6},
        "xyz",
    ],
}

to access attribute "f", you would need to use a series of subscripts, such as my_data["e"][0]["f"]). As a programmer, you probably would find it more natural to use the attribute notation, such as my_data.e[0].f, or the JSONPath notation, such as my_data["$.e[0].f"]. This is what MagicO enables you to do.

To install MagicO:

pip install magico

To use MagicO:

from magico import MagicO

my_magic = MagicO(my_data)

Attribute notation

To access an attribute using the attribute notation:

print(my_magic) # Original data
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

print(my_magic.e[0].f)
# Output: 6

You may create new attributes, change them, and delete them using the attribute notation.

print(my_magic) # Original data
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

my_magic.b.g = 7
print(my_magic) # b.g is created
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5), 'g': 7}, 'e': [{'f': 6}, 'xyz']}

my_magic.b.g = 8
print(my_magic) # b.g is updated
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5), 'g': 8}, 'e': [{'f': 6}, 'xyz']}

del my_magic.b.g
print(my_magic) # b.g is deleted
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

JSONPath notation

There are times when the attribute to access is programmatically formulated as a JSONPath, such as "$.e[0].f". In this case, you may use the JSONPath as a subscript to the MagicO object, as in the following example:

print(my_magic) # Original data
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

print(my_magic["$.e[0].f"])
# Output: 6

# The root element of the JSONPath can be omitted
print(my_magic["e[0].f"])
# Output: 6

With the MagicO subscript notation, you can create a "deep" attribute simply by assigning a value to it, and all missing parent attributes along the path will be created automatically. For example:

my_magic["$.b.g.h.i"] = 9 # Creating a "deep" attribute b.g.h.i
print(my_magic) # Attribute "b" is added with "g.h" to get to "i"
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5), 'g': {'h': {'i': 9}}}, 'e': [{'f': 6}, 'xyz']}

del my_magic["$.b.g"] # Deleting the parent will delete its tree
print(my_magic) # Attribute "b.g" is deleted
# Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

Data types

The data type MagicO returns depends on how you access it:

  • Attribute notation:
    • dict, list, tuple and MagicO objects: Returns as a MagicO object
      • .to_data(): Returns the data
    • Scalar (str, int, bool, etc.): Returns the data
  • JSONPath notation:
    • Returns the data
print("MagicO object")
print(f"  {type(my_magic)}: {my_magic}") # <class 'magico.magico.MagicO'>: ...
print(f"  {type(my_magic.to_data())}: {my_magic.to_data()}") # <class 'dict'>: ...
print(f"  {type(my_magic.data_type())}: {my_magic.data_type()}") # <class 'type'>: <class 'dict'>

print("dict object")
print(f"  {type(my_magic.e[0])}: {my_magic.e[0]}") # <class 'magico.magico.MagicO'>: {'f': 6}
print(f"  {type(my_magic.e[0].to_data())}: {my_magic.e[0].to_data()}") # <class 'dict'>: {'f': 6}
print(f"  {type(my_magic.e[0].data_type())}: {my_magic.e[0].data_type()}") # <class 'type'>: <class 'dict'>

print("list object")
print(f"  {type(my_magic.e)}: {my_magic.e}") # <class 'magico.magico.MagicO'>: [{'f': 6}, 'xyz']
print(f"  {type(my_magic.e.to_data())}: {my_magic.e.to_data()}") # <class 'list'>: [{'f': 6}, 'xyz']
print(f"  {type(my_magic.e.data_type())}: {my_magic.e.data_type()}") # <class 'type'>: <class 'list'>

print("tuple object")
print(f"  {type(my_magic.b.d)}: {my_magic.b.d}") # <class 'magico.magico.MagicO'>: (4, 5)
print(f"  {type(my_magic.b.d.to_data())}: {my_magic.b.d.to_data()}") # <class 'tuple'>: (4, 5)
print(f"  {type(my_magic.b.d.data_type())}: {my_magic.b.d.data_type()}") # <class 'type'>: <class 'tuple'>

print("Scalar")
print(f"  {type(my_magic.e[0].f)}: {my_magic.e[0].f}") # <class 'int'>: 6

print("JSONPath access")
print(f"  {type(my_magic['$.e[0].f'])}: {my_magic['$.e[0].f']}") # <class 'int'>: 6
print(f"  {type(my_magic[''])}: {my_magic['']}") # <class 'dict'>: ...

MagicO supports all dict, list, and tuple behaviours: you may use dict methods, list methods, and tuple methods on a MagicO object, as if it is the underlying dict, list, or tuple.

For example,

# Iterable
for m in my_magic:
    print(f"{m}: {my_magic[m]}")
# Output:
# a: 1
# b: {'c': 3, 'd': (4, 5)}
# e: [{'f': 6}, 'xyz']

# Sortable
my_magic.e.append([8, 6, 7, 5])
print(my_magic)
my_magic.e[-1].sort()
print(my_magic)
# Output:
# {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz', [8, 6, 7, 5]]}
# {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz', [5, 6, 7, 8]]}

Referential pointers

Access to a MagicO object returns a pointer to the original data. Updating the returned object will affect the original data object as well. In short, MagicO is a wrapper of the original data you created it with. They all share the same storage.

print(my_data) # Original: {..., 'e': [{'f': 6}, 'xyz'], ...}
my_magic_data = my_magic.to_data()

# Update the data object
my_magic_data["e"][1] = "abc"
print(my_data) # Output: {..., 'e': [{'f': 6}, 'abc'], ...}

# Update the MagicO object
my_magic.e[1] = "xyz"
print(my_data) # Output: {..., 'e': [{'f': 6}, 'xyz'], ...}

Another example with JSONPath and delete. The deletion on the returned object my_magic_attr affects the original data my_data.

my_magic_attr = my_magic["$.e"]
print(my_magic_attr) # Output: [{'f': 6}, 'xyz', [5, 6, 7, 8]]

del my_magic_attr[-1]
print(my_data) # Output: {'a': 1, 'b': {'c': 3, 'd': (4, 5)}, 'e': [{'f': 6}, 'xyz']}

Here is a Jupyter version of this document.

If you have any questions or experience any issues, please log a MagicO ticket on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

magico-1.0.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

magico-1.0-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file magico-1.0.tar.gz.

File metadata

  • Download URL: magico-1.0.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for magico-1.0.tar.gz
Algorithm Hash digest
SHA256 16d4791f1280714dc1278c225d30b1dc5d4577d711be407ca3ccd0988a790d1d
MD5 612aaa7d8daaecaa0659ff4317a8b4c6
BLAKE2b-256 85ec97b947f535ec99691933c0df85ab306a1ed16036272b55f5ed41a280932c

See more details on using hashes here.

File details

Details for the file magico-1.0-py3-none-any.whl.

File metadata

  • Download URL: magico-1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for magico-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 990e067088bb7b34beb249dfa4a22979d84d744e9bc565935484af16f9a9e065
MD5 b2a19a5b1f07ddc6e384a0076cc19256
BLAKE2b-256 b5787139afba9ede78c220c1f4ea7bdee447b485cdf1cdbf6304e40c915e3463

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page