Python client for Magics's Cloud Platform!
Project description
Magics Python API library
The Magics Python API Library is the official Python client for Magics's API platform, providing a convenient way for interacting with the REST APIs and enables easy integrations with Python 3.8+ applications with easy to use synchronous and asynchronous clients.
Installation
To install Magics Python Library from PyPI, simply run:
pip install -e .
Setting up API Key
Setting environment variable
export MAGICS_API_KEY=xxxxx
Using the client
from magics import Magics
client = Magics(api_key="xxxxx")
This repo contains both a Python Library and a CLI. We'll demonstrate how to use both below.
Usage – Python Client
Chat Completions
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
response = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
)
print(response.choices[0].message.content)
Streaming
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
stream = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from magics import AsyncMagics
async_client = AsyncMagics(api_key=os.environ.get("MAGICS_API_KEY"))
messages = [
"What are the top things to do in San Francisco?",
"What country is Paris in?",
]
async def async_chat_completion(messages):
async_client = AsyncMagics(api_key=os.environ.get("MAGICS_API_KEY"))
tasks = [
async_client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": message}],
)
for message in messages
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].message.content)
asyncio.run(async_chat_completion(messages))
Completions
Completions are for code and language models shown here. Below, a code model example is shown.
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
response = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
max_tokens=200,
)
print(response.choices[0].text)
Streaming
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
stream = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from magics import AsyncMagics
async_client = AsyncMagics(api_key=os.environ.get("MAGICS_API_KEY"))
prompts = [
"Write a Next.js component with TailwindCSS for a header component.",
"Write a python function for the fibonacci sequence",
]
async def async_chat_completion(prompts):
async_client = AsyncMagics(api_key=os.environ.get("MAGICS_API_KEY"))
tasks = [
async_client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt=prompt,
)
for prompt in prompts
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].text)
asyncio.run(async_chat_completion(prompts))
Image generation
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
response = client.images.generate(
prompt="space robots",
model="stabilityai/stable-diffusion-xl-base-1.0",
steps=10,
n=4,
)
print(response.data[0].b64_json)
Embeddings
from typing import List
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
def get_embeddings(texts: List[str], model: str) -> List[List[float]]:
texts = [text.replace("\n", " ") for text in texts]
outputs = client.embeddings.create(model=model, input = texts)
return [outputs.data[i].embedding for i in range(len(texts))]
input_texts = ['Our solar system orbits the Milky Way galaxy at about 515,000 mph']
embeddings = get_embeddings(input_texts, model='magicscomputer/m2-bert-80M-8k-retrieval')
print(embeddings)
Files
The files API is used for fine-tuning and allows developers to upload data to fine-tune on. It also has several methods to list all files, retrive files, and delete files. Please refer to our fine-tuning docs here.
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
client.files.upload(file="somedata.jsonl") # uploads a file
client.files.list() # lists all uploaded files
client.files.retrieve(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves a specific file
client.files.retrieve_content(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves content of a specific file
client.files.delete(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # deletes a file
Fine-tunes
The finetune API is used for fine-tuning and allows developers to create finetuning jobs. It also has several methods to list all jobs, retrive statuses and get checkpoints. Please refer to our fine-tuning docs here.
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
client.fine_tuning.create(
training_file = 'file-d0d318cb-b7d9-493a-bd70-1cfe089d3815',
model = 'mistralai/Mixtral-8x7B-Instruct-v0.1',
n_epochs = 3,
n_checkpoints = 1,
batch_size = "max",
learning_rate = 1e-5,
suffix = 'my-demo-finetune',
wandb_api_key = '1a2b3c4d5e.......',
)
client.fine_tuning.list() # lists all fine-tuned jobs
client.fine_tuning.retrieve(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # retrieves information on finetune event
client.fine_tuning.cancel(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Cancels a fine-tuning job
client.fine_tuning.list_events(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Lists events of a fine-tune job
client.fine_tuning.download(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # downloads compressed fine-tuned model or checkpoint to local disk
Models
This lists all the models that Magics supports.
import os
from magics import Magics
client = Magics(api_key=os.environ.get("MAGICS_API_KEY"))
models = client.models.list()
for model in models:
print(model)
Usage – CLI
Chat Completions
magics chat.completions \
--message "system" "You are a helpful assistant named Magics" \
--message "user" "What is your name?" \
--model mistralai/Mixtral-8x7B-Instruct-v0.1
The Chat Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Completions
magics completions \
"Large language models are " \
--model mistralai/Mixtral-8x7B-v0.1 \
--max-tokens 512 \
--stop "."
The Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Image Generations
magics images generate \
"space robots" \
--model stabilityai/stable-diffusion-xl-base-1.0 \
--n 4
The image is opened in the default image viewer by default. To disable this, use --no-show
.
Files
# Help
magics files --help
# Check file
magics files check example.jsonl
# Upload file
magics files upload example.jsonl
# List files
magics files list
# Retrieve file metadata
magics files retrieve file-6f50f9d1-5b95-416c-9040-0799b2b4b894
# Retrieve file content
magics files retrieve-content file-6f50f9d1-5b95-416c-9040-0799b2b4b894
# Delete remote file
magics files delete file-6f50f9d1-5b95-416c-9040-0799b2b4b894
Fine-tuning
# Help
magics fine-tuning --help
# Create fine-tune job
magics fine-tuning create \
--model magicscomputer/llama-2-7b-chat \
--training-file file-711d8724-b3e3-4ae2-b516-94841958117d
# List fine-tune jobs
magics fine-tuning list
# Retrieve fine-tune job details
magics fine-tuning retrieve ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# List fine-tune job events
magics fine-tuning list-events ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# Cancel running job
magics fine-tuning cancel ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# Download fine-tuned model weights
magics fine-tuning download ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
Models
# Help
magics models --help
# List models
magics models list
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file magics-python-0.0.2.tar.gz
.
File metadata
- Download URL: magics-python-0.0.2.tar.gz
- Upload date:
- Size: 50.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40a916244ca7c206c3bbe8620f21635b4759c4edbd4a4ad513f6e35e08d48a70 |
|
MD5 | c414efbc70e783123b1ad176c0dac183 |
|
BLAKE2b-256 | 70bb356e804b292d63d86265f39222f4c91abdcdd2ba8c4e8e9313bd2da1e935 |
File details
Details for the file magics_python-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: magics_python-0.0.2-py3-none-any.whl
- Upload date:
- Size: 69.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a25893fd0ad59c87992a6bb48f27ca0af3df8d9d3bb6dfee0bfcabdf5e5ac77b |
|
MD5 | 2ea72ead25d29cbb98be343d5195387d |
|
BLAKE2b-256 | 1ec4ab1fd48789cb685b15b1ea0906113f2638aebbd3bd8a7a88738f6d254b23 |