Skip to main content

Natural-Language-Toolkit for bahasa Malaysia, powered by Deep Learning.

Project description

.. raw:: html

<p align="center">
<a href="#readme">
<img alt="logo" width="70%" src="https://raw.githubusercontent.com/DevconX/Malaya/master/session/towns-of-malaya.jpg">
</a>
</p>
<p align="center">
<a href="https://pypi.python.org/pypi/malaya"><img alt="cpu downloaded" src="https://img.shields.io/pypi/dm/malaya.svg"></a>
<a href="https://pypi.python.org/pypi/malaya"><img alt="gpu downloaded" src="https://img.shields.io/pypi/dm/malaya-gpu.svg"></a>
<a href="https://pypi.python.org/pypi/malaya"><img alt="Pypi version" src="https://badge.fury.io/py/malaya.svg"></a>
<a href="https://malaya.readthedocs.io/"><img alt="Documentation" src="https://readthedocs.org/projects/malaya/badge/?version=latest"></a>
<a href="https://travis-ci.org/huseinzol05/Malaya"><img alt="Build status" src="https://travis-ci.org/huseinzol05/Malaya.svg?branch=master"></a>

</p>

=========

**Malaya** is a Natural-Language-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Documentation
--------------

Proper documentation is available at https://malaya.readthedocs.io/

Installing from the PyPI
----------------------------------

CPU version
::

$ pip install malaya

GPU version
::

$ pip install malaya-gpu

Only **Python 3.6.x** is supported.

Features
--------

- **Emotion Analysis**

From BERT, Fast-Text, Dynamic-Memory Network, Sparse Tensorflow, Attention Neural Network to build deep emotion analysis models.
- **Entities Recognition**

Latest state-of-art CRF deep learning models to do Naming Entity Recognition.

- **Language Detection**

using Multinomial, SGD, XGB, Fast-text N-grams deep learning to distinguish Malay, English, and Indonesian.
- **Normalizer**

using local Malaysia NLP researches to normalize any
bahasa texts.
- **Num2Word**

Convert from numbers to cardinal or ordinal representation.
- **Part-of-Speech Recognition**

Latest state-of-art CRF deep learning models to do Naming Entity Recognition.
- **Sentiment Analysis**

From BERT, Fast-Text, Dynamic-Memory Network, Sparse Tensorflow, Attention Neural Network to build deep sentiment analysis models.
- **Spell Correction**

Using local Malaysia NLP researches to auto-correct any bahasa words.
- Stemmer
- **Subjectivity Analysis**

From BERT, Fast-Text, Dynamic-Memory Network, Sparse Tensorflow, Attention Neural Network to build deep subjectivity analysis models.
- **Summarization**

Using skip-thought with attention state-of-art to give precise unsupervised summarization.
- **Topic Modelling**

Provide LDA2Vec, LDA, NMF and LSA interface for easy topic modelling with topics visualization.
- **Topic and Influencers Analysis**

Using deep and machine learning models to understand topics and Influencers similarity in sentences.
- **Toxicity Analysis**

From BERT, Fast-Text, Dynamic-Memory Network, Attention Neural Network to build deep toxicity analysis models.
- **Word2Vec**

Provide pretrained bahasa wikipedia and bahasa news Word2Vec, with easy interface and visualization.

License
--------

.. |License| image:: https://app.fossa.io/api/projects/git%2Bgithub.com%2Fhuseinzol05%2FMalaya.svg?type=large
:target: https://app.fossa.io/projects/git%2Bgithub.com%2Fhuseinzol05%2FMalaya?ref=badge_large

|License|


Project details


Release history Release notifications | RSS feed

This version

1.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malaya-1.3.tar.gz (59.6 kB view hashes)

Uploaded Source

Built Distribution

malaya-1.3-py3-none-any.whl (117.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page