No project description provided
Project description
marginaleffects
for Python
The marginaleffects
package allows Python
users to compute and plot
three principal quantities of interest: (1) predictions, (2)
comparisons, and (3) slopes. In addition, the package includes a
convenience function to compute a fourth estimand, “marginal means”,
which is a special case of averaged predictions. marginaleffects
can
also average (or “marginalize”) unit-level (or “conditional”) estimates
of all those quantities, and conduct hypothesis tests on them.
WARNING
This is an alpha version of the package, released to gather feedback, feature requests, and bug reports from potential users. This version includes known bugs. There are also known discrepancies between the numerical results produced in Python and R. Please report any issues you encounter here: https://github.com/vincentarelbundock/pymarginaleffects/issues
Supported models
There is a good chance that this package will work with (nearly) all the
models supported by the statsmodels
formula
API,
ex: ols
, probit
, logit
, mnlogit
, quantreg
, poisson
,
negativebinomial
, mixedlm
, rlm
, etc. However, the package has only
been tested with a subset of those, and some weirdness remains. Again:
this is alpha software; it should not be used in critical applications
yet.
Installation
Install the latest PyPi release:
pip install marginaleffects
Estimands: Predictions, Comparisons, and Slopes
Definitions
The outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or factor levels. a.k.a. Fitted values, adjusted predictions.
predictions()
,avg_predictions()
,plot_predictions()
.
Compare the predictions made by a model for different regressor values (e.g., college graduates vs. others): contrasts, differences, risk ratios, odds, etc.
comparisons()
,avg_comparisons()
,plot_comparisons()
.
Partial derivative of the regression equation with respect to a regressor of interest. a.k.a. Marginal effects, trends.
slopes()
,avg_slopes()
,plot_slopes()
.
Hypothesis and Equivalence Tests:
Hypothesis and equivalence tests can be conducted on linear or non-linear functions of model coefficients, or on any of the quantities computed by the
marginaleffects
packages (predictions, slopes, comparisons, marginal means, etc.). Uncertainy estimates can be obtained via the delta method (with or without robust standard errors), bootstrap, or simulation.
Predictions, comparisons, and slopes are fundamentally unit-level (or “conditional”) quantities. Except in the simplest linear case, estimates will typically vary based on the values of all the regressors in a model. Each of the observations in a dataset is thus associated with its own prediction, comparison, and slope estimates. Below, we will see that it can be useful to marginalize (or “average over”) unit-level estimates to report an “average prediction”, “average comparison”, or “average slope”.
We now apply marginaleffects
functions to compute each of the
estimands described above. First, we fit a linear regression model with
multiplicative interactions:
Predictions
import numpy as np
import polars as pl
from marginaleffects import *
import statsmodels.formula.api as smf
mtcars = pl.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv")
mod = smf.ols("mpg ~ hp * wt * am", data = mtcars).fit()
print(mod.summary().as_text())
OLS Regression Results
==============================================================================
Dep. Variable: mpg R-squared: 0.896
Model: OLS Adj. R-squared: 0.866
Method: Least Squares F-statistic: 29.55
Date: Mon, 24 Jul 2023 Prob (F-statistic): 2.60e-10
Time: 18:11:21 Log-Likelihood: -66.158
No. Observations: 32 AIC: 148.3
Df Residuals: 24 BIC: 160.0
Df Model: 7
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 40.3272 13.008 3.100 0.005 13.480 67.175
hp -0.0888 0.065 -1.372 0.183 -0.222 0.045
wt -4.7968 4.002 -1.199 0.242 -13.056 3.462
hp:wt 0.0145 0.019 0.755 0.458 -0.025 0.054
am 12.8371 14.222 0.903 0.376 -16.517 42.191
hp:am -0.0326 0.089 -0.366 0.717 -0.216 0.151
wt:am -5.3620 4.597 -1.166 0.255 -14.851 4.127
hp:wt:am 0.0178 0.026 0.680 0.503 -0.036 0.072
==============================================================================
Omnibus: 1.875 Durbin-Watson: 2.205
Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.588
Skew: 0.528 Prob(JB): 0.452
Kurtosis: 2.721 Cond. No. 3.32e+04
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.32e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
Then, we call the predictions()
function. As noted above, predictions
are unit-level estimates, so there is one specific prediction per
observation. By default, the predictions()
function makes one
prediction per observation in the dataset that was used to fit the
original model. Since mtcars
has 32 rows, the predictions()
outcome
also has 32 rows:
pre = predictions(mod)
pre.shape
print(pre.head())
| Estimate | Std.Error | z | P(>|z|) | S | [ | ] |
|----------|-----------|------|---------|------|------|------|
| 22.5 | 0.884 | 25.4 | 0 | inf | 20.7 | 24.3 |
| 20.8 | 1.19 | 17.4 | 4e-15 | 47.8 | 18.3 | 23.3 |
| 25.3 | 0.709 | 35.7 | 0 | inf | 23.8 | 26.7 |
| 20.3 | 0.704 | 28.8 | 0 | inf | 18.8 | 21.7 |
| 17 | 0.712 | 23.9 | 0 | inf | 15.5 | 18.5 |
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, , mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
Comparisons: Differences, Ratios, Log-Odds, Lift, etc.
Now, we use the comparisons()
function to compute the difference in
predicted outcome when each of the predictors is incremented by 1 unit
(one predictor at a time, holding all others constant). Once again,
comparisons are unit-level quantities. And since there are 3 predictors
in the model and our data has 32 rows, we obtain 96 comparisons:
cmp = comparisons(mod)
cmp.shape
print(cmp.head())
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | [ | ] |
|------|----------|----------|-----------|---|---------|------|---------|---------|
| hp | +1 | -0.0369 | 0.0185 | … | 0.0575 | 4.12 | -0.0751 | 0.00128 |
| hp | +1 | -0.0287 | 0.0156 | … | 0.0788 | 3.67 | -0.0609 | 0.00357 |
| hp | +1 | -0.0466 | 0.0226 | … | 0.0502 | 4.32 | -0.0932 | 4.6e-05 |
| hp | +1 | -0.0423 | 0.0133 | … | 0.00401 | 7.96 | -0.0697 | -0.0149 |
| hp | +1 | -0.039 | 0.0134 | … | 0.00769 | 7.02 | -0.0667 | -0.0113 |
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, , mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function allows customized queries. For example,
what happens to the predicted outcome when the hp
variable increases
from 100 to 120?
cmp = comparisons(mod, variables = {"hp": [120, 100]})
print(cmp)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|-----------|----------|-----------|---|---------|-------|-----------|-------|
| hp | 100 - 120 | 0.738 | 0.37 | … | 0.0576 | 4.12 | -0.0256 | 1.5 |
| hp | 100 - 120 | 0.574 | 0.313 | … | 0.0788 | 3.67 | -0.0713 | 1.22 |
| hp | 100 - 120 | 0.931 | 0.452 | … | 0.0502 | 4.32 | -0.000918 | 1.86 |
| hp | 100 - 120 | 0.845 | 0.266 | … | 0.00401 | 7.96 | 0.297 | 1.39 |
| … | … | … | … | … | … | … | … | … |
| hp | 100 - 120 | 0.384 | 0.27 | … | 0.168 | 2.57 | -0.173 | 0.941 |
| hp | 100 - 120 | 0.641 | 0.334 | … | 0.0671 | 3.9 | -0.0488 | 1.33 |
| hp | 100 - 120 | 0.126 | 0.272 | … | 0.648 | 0.626 | -0.436 | 0.688 |
| hp | 100 - 120 | 0.635 | 0.332 | … | 0.068 | 3.88 | -0.0507 | 1.32 |
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, , mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
What happens to the predicted outcome when the wt
variable increases
by 1 standard deviation about its mean?
cmp = comparisons(mod, variables = {"hp": "sd"})
print(cmp)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|--------------------|----------|-----------|---|---------|-------|-------|---------|
| hp | +68.56286848932059 | -2.53 | 1.27 | … | 0.0576 | 4.12 | -5.15 | 0.0878 |
| hp | +68.56286848932059 | -1.97 | 1.07 | … | 0.0788 | 3.67 | -4.18 | 0.245 |
| hp | +68.56286848932059 | -3.19 | 1.55 | … | 0.0502 | 4.32 | -6.39 | 0.00315 |
| hp | +68.56286848932059 | -2.9 | 0.911 | … | 0.00401 | 7.96 | -4.78 | -1.02 |
| … | … | … | … | … | … | … | … | … |
| hp | +68.56286848932059 | -1.32 | 0.925 | … | 0.168 | 2.57 | -3.22 | 0.594 |
| hp | +68.56286848932059 | -2.2 | 1.15 | … | 0.0671 | 3.9 | -4.57 | 0.167 |
| hp | +68.56286848932059 | -0.432 | 0.933 | … | 0.648 | 0.626 | -2.36 | 1.49 |
| hp | +68.56286848932059 | -2.18 | 1.14 | … | 0.068 | 3.88 | -4.53 | 0.174 |
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, , mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function also allows users to specify arbitrary
functions of predictions, with the comparison
argument. For example,
what is the average ratio between predicted Miles per Gallon after an
increase of 50 units in Horsepower?
cmp = comparisons(
mod,
variables = {"hp": 50},
comparison = "ratioavg")
print(cmp)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|----------|----------|-----------|---|---------|-----|------|-------|
| hp | +50 | 0.91 | 0.0291 | … | 0 | inf | 0.85 | 0.97 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Slopes: Derivatives and elasticities
Consider a logistic regression model with a single predictor:
url = "https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv"
mtcars = pl.read_csv(url)
mod = smf.logit("am ~ mpg", data = mtcars).fit()
Optimization terminated successfully.
Current function value: 0.463674
Iterations 6
We can estimate the slope of the prediction function with respect to the
mpg
variable at any point in the data space. For example, what is the
slope of the prediction function at mpg = 24
?
mfx = slopes(mod, newdata = datagrid(mpg = 24, newdata = mtcars))
print(mfx)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|----------|----------|-----------|---|----------|------|--------|-------|
| mpg | dY/dX | 0.0665 | 0.0178 | … | 0.000798 | 10.3 | 0.0301 | 0.103 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
This is equivalent to the result we obtain by taking the analytical derivative using the chain rule:
from scipy.stats import logistic
beta_0 = mod.params.iloc[0]
beta_1 = mod.params.iloc[1]
print(beta_1 * logistic.pdf(beta_0 + beta_1 * 24))
0.06653436463892946
This computes a “marginal effect (or slope) at the mean” or “at the median”, that is, when all covariates are held at their mean or median values:
mfx = slopes(mod, newdata = "mean")
print(mfx)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|----------|----------|-----------|---|---------|------|--------|-------|
| mpg | dY/dX | 0.0732 | 0.0283 | … | 0.0148 | 6.08 | 0.0154 | 0.131 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
mfx = slopes(mod, newdata = "median")
print(mfx)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|----------|----------|-----------|---|---------|------|--------|-------|
| mpg | dY/dX | 0.0679 | 0.0253 | … | 0.0118 | 6.41 | 0.0162 | 0.12 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
We can also compute an “average slope” or “average marginaleffects”
mfx = avg_slopes(mod)
print(mfx)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|-------------|----------|-----------|---|----------|------|--------|--------|
| mpg | mean(dY/dX) | 0.0465 | 0.00886 | … | 1.16e-05 | 16.4 | 0.0284 | 0.0646 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Which again is equivalent to the analytical result:
np.mean(beta_1 * logistic.pdf(beta_0 + beta_1 * mtcars["mpg"]))
0.04648596405936302
Grid
Predictions, comparisons, and slopes are typically “conditional”
quantities which depend on the values of all the predictors in the
model. By default, marginaleffects
functions estimate quantities of
interest for the empirical distribution of the data (i.e., for each row
of the original dataset). However, users can specify the exact values of
the predictors they want to investigate by using the newdata
argument.
newdata
accepts data frames like this:
pre = predictions(mod, newdata = mtcars.tail(2))
print(pre)
| Estimate | Std.Error | z | P(>|z|) | S | 2.5% | 97.5% |
|----------|-----------|------|----------|------|---------|-------|
| 0.119 | 0.0778 | 1.53 | 0.136 | 2.88 | -0.0396 | 0.278 |
| 0.492 | 0.12 | 4.11 | 0.000281 | 11.8 | 0.247 | 0.736 |
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, , mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The datagrid
function gives us a powerful way to define a grid of
predictors.
All the variables not mentioned explicitly in datagrid()
are fixed to
their mean or mode:
pre = predictions(
mod,
newdata = datagrid(
newdata = mtcars,
am = [0, 1],
wt = [mtcars["wt"].max(), mtcars["wt"].min()]))
print(pre)
| Estimate | Std.Error | z | P(>|z|) | S | 2.5% | 97.5% |
|----------|-----------|------|---------|------|-------|-------|
| 0.393 | 0.108 | 3.63 | 0.00106 | 9.89 | 0.172 | 0.614 |
| 0.393 | 0.108 | 3.63 | 0.00106 | 9.89 | 0.172 | 0.614 |
| 0.393 | 0.108 | 3.63 | 0.00106 | 9.89 | 0.172 | 0.614 |
| 0.393 | 0.108 | 3.63 | 0.00106 | 9.89 | 0.172 | 0.614 |
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, am, wt, , mpg, cyl, disp, hp, drat, qsec, vs, gear, carb
Averaging
Since predictions, comparisons, and slopes are conditional quantities, they can be a bit unwieldy. Often, it can be useful to report a one-number summary instead of one estimate per observation. Instead of presenting “conditional” estimates, some methodologists recommend reporting “marginal” estimates, that is, an average of unit-level estimates.
(This use of the word “marginal” as “averaging” should not be confused with the term “marginal effect” which, in the econometrics tradition, corresponds to a partial derivative, or the effect of a “small/marginal” change.)
To marginalize (average over) our unit-level estimates, we can use the
by
argument or the one of the convenience functions:
avg_predictions()
, avg_comparisons()
, or avg_slopes()
. For
example, both of these commands give us the same result: the average
predicted outcome in the mtcars
dataset:
pre = avg_predictions(mod)
print(pre)
| Estimate | Std.Error | z | P(>|z|) | S | 2.5% | 97.5% |
|----------|-----------|------|----------|------|-------|-------|
| 0.406 | 0.0688 | 5.91 | 1.81e-06 | 19.1 | 0.266 | 0.547 |
Columns: estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
This is equivalent to manual computation by:
np.mean(mod.predict())
0.40624999999999994
The main marginaleffects
functions all include a by
argument, which
allows us to marginalize within sub-groups of the data. For example,
cmp = avg_comparisons(mod, by = "am")
print(cmp)
| am | Term | Contrast | Estimate | … | P(>|z|) | S | 2.5% | 97.5% |
|----|------|----------|----------|---|----------|------|--------|--------|
| 1 | mpg | +1 | 0.0449 | … | 1.44e-07 | 22.7 | 0.0315 | 0.0584 |
| 0 | mpg | +1 | 0.0475 | … | 0.000285 | 11.8 | 0.0239 | 0.0711 |
Columns: am, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Marginal Means are a special case of predictions, which are marginalized (or averaged) across a balanced grid of categorical predictors. To illustrate, we estimate a new model with categorical predictors:
dat = mtcars \
.with_columns(
pl.col("am").cast(pl.Boolean),
pl.col("cyl").cast(pl.Utf8)
)
mod_cat = smf.ols("mpg ~ am + cyl + hp", data = dat).fit()
We can compute marginal means manually using the functions already described:
pre = avg_predictions(
mod_cat,
newdata = datagrid(
newdata = dat,
cyl = dat["cyl"].unique(),
am = dat["am"].unique()),
by = "am")
print(pre)
cmp = avg_comparisons(mod_cat)
print(cmp)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|--------------------------|----------|-----------|---|---------|------|---------|---------|
| hp | +1 | -0.0442 | 0.0146 | … | 0.00527 | 7.57 | -0.0742 | -0.0143 |
| cyl | 6 - 4 | -3.92 | 1.54 | … | 0.0167 | 5.91 | -7.08 | -0.77 |
| cyl | 8 - 4 | -3.53 | 2.5 | … | 0.169 | 2.56 | -8.67 | 1.6 |
| am | mean(True) - mean(False) | 4.16 | 1.26 | … | 0.00266 | 8.55 | 1.58 | 6.74 |
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Hypothesis and equivalence tests
The hypotheses()
function and the hypothesis
argument can be used to
conduct linear and non-linear hypothesis tests on model coefficients, or
on any of the quantities computed by the functions introduced above.
Consider this model:
mod = smf.ols("mpg ~ qsec * drat", data = mtcars).fit()
mod.params
Intercept 12.337199
qsec -1.024118
drat -3.437146
qsec:drat 0.597315
dtype: float64
Can we reject the null hypothesis that the drat
coefficient is 2 times
the size of the qsec
coefficient?
hyp = hypotheses(mod, "b3 = 2 * b2")
print(hyp)
| term | estimate | std_error | statistic | p_value | s_value | conf_low | conf_high |
|---------|-----------|-----------|-----------|----------|----------|------------|-----------|
| b3=2*b2 | -1.388909 | 10.77593 | -0.12889 | 0.898366 | 0.154625 | -23.462402 | 20.684583 |
The main functions in marginaleffects
all have a hypothesis
argument, which means that we can do complex model testing. For example,
consider two slope estimates:
range = lambda x: [x.max(), x.min()]
cmp = comparisons(
mod,
variables = "drat",
newdata = datagrid(newdata = mtcars, qsec = range(mtcars["qsec"])))
print(cmp)
| Term | Contrast | Estimate | Std.Error | … | P(>|z|) | S | 2.5% | 97.5% |
|------|----------|----------|-----------|---|---------|------|--------|-------|
| drat | +1 | 10.2 | 5.16 | … | 0.0571 | 4.13 | -0.331 | 20.8 |
| drat | +1 | 5.22 | 3.79 | … | 0.179 | 2.48 | -2.54 | 13 |
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, qsec, , mpg, cyl, disp, hp, drat, wt, vs, am, gear, carb
Are these two contrasts significantly different from one another? To
test this, we can use the hypothesis
argument:
cmp = comparisons(
mod,
hypothesis = "b1 = b2",
variables = "drat",
newdata = datagrid(newdata = mtcars, qsec = range(mtcars["qsec"])))
print(cmp)
| Term | Estimate | Std.Error | z | P(>|z|) | S | 2.5% | 97.5% |
|-------|----------|-----------|-------|---------|-------|-------|-------|
| b1=b2 | 5.02 | 8.52 | 0.589 | 0.561 | 0.835 | -12.4 | 22.5 |
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file marginaleffects-0.0.6.tar.gz
.
File metadata
- Download URL: marginaleffects-0.0.6.tar.gz
- Upload date:
- Size: 47.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3360086b7de707a9cc4b3972ac0501ec1a8f9fee6a405ad6c4d83cdbf2cb30be |
|
MD5 | 1f809c2ab2f20ead68196ab1eafc56fb |
|
BLAKE2b-256 | 47738d04e598b579a30e6508b264246b75979771d49b65bcf100cb0514b5d47a |
File details
Details for the file marginaleffects-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: marginaleffects-0.0.6-py3-none-any.whl
- Upload date:
- Size: 50.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba751cb5eff3f8d9d2631dc0c66cdc8632b7ea479872aa2c902210a1ee6ddbd9 |
|
MD5 | a5cba32c5549623e77f225ed0a0cb045 |
|
BLAKE2b-256 | 409a8905d90ded2d020ee5a12d2d89757b9dbd1f17c5ec8a17aab07b6c192bc6 |