A high performance multiple functional word matcher
Project description
Matcher Rust Implementation with PyO3 Binding
Installation
Use pip
pip install matcher_py
Install pre-built binary
Visit the release page to download the pre-built binary.
Usage
The msgspec
library is recommended for serializing the matcher configuration due to its performance benefits. You can also use other msgpack serialization libraries like ormsgpack
. All relevant types are defined in extension_types.py.
Explaination of the configuration
Matcher
's configuration is defined by theMatchTableMap = Dict[int, List[MatchTable]]
type, the key ofMatchTableMap
is calledmatch_id
, for eachmatch_id
, thetable_id
inside should but isn't required to be unique.SimpleMatcher
's configuration is defined by theSimpleMatchTableMap = Dict[SimpleMatchType, Dict[int, str]]
type, the valueDict[int, str]
's key is calledword_id
,word_id
is required to be globally unique.
MatchTable
table_id
: The unique ID of the match table.match_table_type
: The type of the match table.simple_match_type
: The type of the simple match (only relevant ifmatch_table_type
is "simple").word_list
: The word list of the match table.exemption_simple_match_type
: The type of the exemption simple match.exemption_word_list
: The exemption word list of the match table.
For each match table, word matching is performed over the word_list
, and exemption word matching is performed over the exemption_word_list
. If the exemption word matching result is True, the word matching result will be False.
MatchTableType
Simple = "simple"
: Supports simple multiple patterns matching with text normalization defined bysimple_match_type
.- We offer transformation methods for text normalization, including
MatchFanjian
,MatchNormalize
,MatchPinYin
···. - It can handle combination patterns and repeated times sensitive matching, delimited by
,
, such ashello,world,hello
will matchhellohelloworld
andworldhellohello
, but nothelloworld
due to the repeated times ofhello
.
- We offer transformation methods for text normalization, including
SimilarChar = "similar_char"
: Supports similar character matching using regex.["hello,hallo,hollo,hi", "word,world,wrd,🌍", "!,?,~"]
will matchhelloworld
,hollowrd
,hi🌍
··· any combinations of the words split by,
in the list.
Acrostic = acrostic
: Supports acrostic matching using regex (currently only supports Chinese and simple English sentences).["h,e,l,l,o", "你,好"]
will matchhope, endures, love, lasts, onward.
and你的笑容温暖, 好心情常伴。
.
SimilarTextLevenshtein = similar_text_levenshtein
: Supports similar text matching based on Levenshtein distance (threshold is 0.8).["helloworld"]
will matchhelloworld
,hellowrld
,helloworld!
··· any similar text to the words in the list.
Regex = regex
: Supports regex matching.["h[aeiou]llo", "w[aeiou]rd"]
will matchhello
,world
,hillo
,wurld
··· any text that matches the regex in the list.
SimpleMatchType
MatchNone = 1
: No transformation.MatchFanjian = 2
: Traditional Chinese to simplified Chinese transformation.妳好
->你好
現⾝
->现身
MatchDelete = 12
: Delete all non-alphanumeric and non-unicode Chinese characters.hello, world!
->helloworld
《你∷好》
->你好
MatchNormalize = 16
: Normalize all English character variations and number variations to basic characters.ℋЀ⒈㈠ϕ
->he11o
⒈Ƨ㊂
->123
MatchPinYin = 32
: Convert all unicode Chinese characters to pinyin with boundaries.你好
->␀ni␀␀hao␀
西安
->␀xi␀␀an␀
MatchPinYinChar = 64
: Convert all unicode Chinese characters to pinyin without boundaries.你好
->nihao
西安
->xian
You can combine these transformations as needed. Pre-defined combinations like MatchDeleteNormalize = 28
and MatchFanjianDeleteNormalize = 30
are provided for convenience.
Avoid combining MatchPinYin
and MatchPinYinChar
due to that MatchPinYin
is a more limited version of MatchPinYinChar
, in some cases like xian
, can be treat as two words xi
and an
, or only one word xian
.
Limitations
Simple Match can handle words with a maximum of 32 combined words (more than 32 then effective combined words are not guaranteed) and 8 repeated words (more than 8 repeated words will be limited to 8).
Matcher Basic Usage
Here’s an example of how to use the Matcher
:
import msgspec
import numpy as np
from matcher_py import Matcher
from matcher_py.extension_types import MatchTable, MatchTableType, SimpleMatchType
msgpack_encoder = msgspec.msgpack.Encoder()
matcher = Matcher(
msgpack_encoder.encode({
1: [
MatchTable(
table_id=1,
match_table_type=MatchTableType.Simple,
simple_match_type=SimpleMatchType.MatchFanjianDeleteNormalize,
word_list=["hello", "world"],
exemption_simple_match_type=SimpleMatchType.MatchNone,
exemption_word_list=["word"],
)
]
})
)
# Check if a text matches
assert matcher.is_match("hello")
assert not matcher.is_match("hello, word")
# Perform word matching as a dict
assert matcher.word_match(r"hello, world")[1]
# Perform word matching as a string
result = matcher.word_match_as_string("hello")
assert result == """{1:[{\"table_id\":1,\"word\":\"hello\"}]"}"""
# Perform batch processing as a dict using a list
text_list = ["hello", "world", "hello,word"]
batch_results = matcher.batch_word_match(text_list)
print(batch_results)
# Perform batch processing as a string using a list
text_list = ["hello", "world", "hello,word"]
batch_results = matcher.batch_word_match_as_string(text_list)
print(batch_results)
# Perform batch processing as a dict using a numpy array
text_array = np.array(["hello", "world", "hello,word"], dtype=np.dtype("object"))
numpy_results = matcher.numpy_word_match(text_array)
print(numpy_results)
# Perform batch processing as a string using a numpy array
text_array = np.array(["hello", "world", "hello,word"], dtype=np.dtype("object"))
numpy_results = matcher.numpy_word_match_as_string(text_array)
print(numpy_results)
Simple Matcher Basic Usage
Here’s an example of how to use the SimpleMatcher
:
import msgspec
import numpy as np
from matcher_py import SimpleMatcher
from matcher_py.extension_types import SimpleMatchType
msgpack_encoder = msgspec.msgpack.Encoder()
simple_matcher = SimpleMatcher(
msgpack_encoder.encode({SimpleMatchType.MatchNone: {1: "example"}})
)
# Check if a text matches
assert simple_matcher.is_match("example")
# Perform simple processing
results = simple_matcher.simple_process("example")
print(results)
# Perform batch processing using a list
text_list = ["example", "test", "example test"]
batch_results = simple_matcher.batch_simple_process(text_list)
print(batch_results)
# Perform batch processing using a NumPy array
text_array = np.array(["example", "test", "example test"], dtype=np.dtype("object"))
numpy_results = simple_matcher.numpy_simple_process(text_array)
print(numpy_results)
Contributing
Contributions to matcher_py
are welcome! If you find a bug or have a feature request, please open an issue on the GitHub repository. If you would like to contribute code, please fork the repository and submit a pull request.
License
matcher_py
is licensed under the MIT OR Apache-2.0 license.
More Information
For more details, visit the GitHub repository.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file matcher_py-0.2.8.tar.gz
.
File metadata
- Download URL: matcher_py-0.2.8.tar.gz
- Upload date:
- Size: 297.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e8cfbb4a44dca408de698bd49d42da2f25232004e36284274d6da483a23f39f |
|
MD5 | c12cded52010ae1fac1585116d1dcc97 |
|
BLAKE2b-256 | 8d64ae47673c1d3e4899db7a05ddb42f70a43c0fd77591ec7f8265d33a269f86 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-win_amd64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-win_amd64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.8+, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37777f9a57c332cd997087d81a882b7dc56cee5416a28288b6b971cbb4391188 |
|
MD5 | b8929f4d3a9891d17ce04e4f0feba0d3 |
|
BLAKE2b-256 | 4cad63702487bbe0debd8a93b762a7ed1d756ee0454ad80fd7c038660756df94 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.8+, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 84470944af1ca162b692314cd7d79aa8acf5ca23efe50710357c088370c4e162 |
|
MD5 | 56a21fb0725f46bd282f0ec6644cecd9 |
|
BLAKE2b-256 | 36b812c32729a12242eb1099b19a9ab0ee744353e1dd036882113fa81cdf7f6f |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.8+, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a614db754d11996c1aeb3ce9c712be5e7bbd5d7e14d36b78e1cd9e57c9367112 |
|
MD5 | e5feacd396893f8b6fcf4f67669e93d0 |
|
BLAKE2b-256 | bf5e4eb3bca68336fe96b234131bbba2889c180eb6400e8be814322bb35bdcd9 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.8+, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9c6e0dc88fdfaa2eec512edb995850bb26f89eb8e57882c35392e2d19c818bb |
|
MD5 | b76a323ed5c7d2075f7c7fb51a20f71c |
|
BLAKE2b-256 | 6c7370914a98dcabc5877c148b4f569df4eca213f198ead4625873ff12beb751 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.8+, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e28a648d34c11ce7434f713a9fa367e3a83f875e2aa4608a2708347218ec2372 |
|
MD5 | 118c13d05e41a123575326be65246640 |
|
BLAKE2b-256 | 744264751854c7fa7f164ecb51549c3e7ffa2bbddfef6a1eed7c11614f3e5e46 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-macosx_11_0_arm64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-macosx_11_0_arm64.whl
- Upload date:
- Size: 1.4 MB
- Tags: CPython 3.8+, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07e70e921d78b7f2a1153468e82ce208407727bb54f37ef17e43b079d63ff0f1 |
|
MD5 | 07ba39f47ca9a7b45a539d7f8595fc71 |
|
BLAKE2b-256 | 130490e9188228aa5bb0845c4a260af0f08c08482ea6a3c8d1f194b374e227e0 |
File details
Details for the file matcher_py-0.2.8-cp38-abi3-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: matcher_py-0.2.8-cp38-abi3-macosx_10_12_x86_64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.8+, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe63deaffa8a38421a6ce80e85ee13f626f384a9a5731d49f412ae1b5c0f227b |
|
MD5 | 1f0df05d87c6bc2f499336ef9d069e88 |
|
BLAKE2b-256 | 8f2243dfedf3b88427664076f44451af3b2e8f78309727ee9a8cd46537444060 |