Skip to main content

MATE

Project description

MATE

  • MATE represents Manycore-processor-Accelerated Transfer Entropy computation.

Installation

  • :snake: Anaconda is recommended to use and develop MATE.
  • :penguin: Linux distros are tested and recommended to use and develop MATE.

Install from GitHub repository

First, clone the recent version of this repository.

git clone https://github.com/cxinsys/mate

Now, we need to install MATE as a module.

cd mate
pip install -e .

  • Default backend framework of the 'MATE' class is PyTorch.
  • [recommended] To use PyTorch Lightning framework, you need to use a another class called 'MATELightning' (see MATELightning class)

Install optional frameworks

MATE supports several optional backend frameworks such as CuPy and JAX.
To use optional frameworks, you need to install the framework manually


Install Cupy from Conda-Forge with cudatoolkit supported by your driver

conda install -c conda-forge cupy cuda-version=xx.x (check your CUDA version)

Install JAX with CUDA > 12.x

pip install -U "jax[cuda12]"

Install TensorFlow-GPU with CUDA

python3 -m pip install tensorflow[and-cuda]

Tutorial

MATE class

Create MATE instance

import mate

worker = mate.MATE()

Run MATE

parameters

  • arr: numpy array for transfer entropy calculation, required
  • pair: numpy array for calculation pairs, optional, default: compute possible pairs from all nodes in the arr
  • backend: optional, default: 'cpu'
  • device_ids: optional, default: [0] (cpu), [list of whole gpu devices] (gpu)
  • procs_per_device: The number of processes to create per device when using non 'cpu' devices, optional, default: 1
  • batch_size: required
  • kp: kernel percentile, optional, default: 0.5
  • df: history length, optional, default: 1
result_matrix = worker.run(arr=arr,
                           pairs=pairs,
                           backend=backend,
                           device_ids=device_ids,
                           procs_per_device=procs_per_device,
                           batch_size=batch_size,
                           kp=kp,
                           dt=dt,
                           )

MATELightning class

Create MATELightning instance

parameters

  • arr: numpy array for transfer entropy calculation, required
  • pair: numpy array for calculation pairs, optional, default: compute possible pairs from all nodes in the arr
  • kp: kernel percentile, optional, default: 0.5
  • len_time: total length of expression array, optional, default: column length of array
  • dt: history length of expression array, optional, default: 1
import mate

worker = mate.MATELightning(arr=arr,
                            pairs=pairs,
                            kp=kp,
                            len_time=len_time,
                            dt=dt)

Run MATELightning

parameters

MATELightning's run function parameters take the same values as PyTorch's DataLoader and PyTorch Lightning's Trainer. For additional options for parameters, see those documents

  • backend: required, 'gpu', 'cpu' or 'tpu' etc
  • devices: required, int or [list of device id]
  • batch_size: required
  • num_workers: optional, default: 0
result_matrix = worker.run(backend=backend,
                           devices=devices,
                           batch_size=batch_size,
                           num_worker=num_worker)

TODO

  • add 'jax' backend module
  • implement 'pytorch lightning' backend module
  • add 'tensorflow' backend module

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mate_cxinsys-0.1.11.tar.gz (551.6 kB view details)

Uploaded Source

Built Distribution

mate_cxinsys-0.1.11-py3-none-any.whl (552.6 kB view details)

Uploaded Python 3

File details

Details for the file mate_cxinsys-0.1.11.tar.gz.

File metadata

  • Download URL: mate_cxinsys-0.1.11.tar.gz
  • Upload date:
  • Size: 551.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mate_cxinsys-0.1.11.tar.gz
Algorithm Hash digest
SHA256 12adf4dc006615836f0fed331ffaf216cca659720f8ec7c43ef4719e14cc7508
MD5 bb3fe2d83ac51793cf1a2467f9987d5d
BLAKE2b-256 b699f2fd8eedd287d51fd0c044921e15ec1697a701131821791857d4757c573e

See more details on using hashes here.

Provenance

The following attestation bundles were made for mate_cxinsys-0.1.11.tar.gz:

Publisher: publish.yml on cxinsys/mate

Attestations:

File details

Details for the file mate_cxinsys-0.1.11-py3-none-any.whl.

File metadata

File hashes

Hashes for mate_cxinsys-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 557ed54e8172fdc676a9e2b7a18af88dc89ccb35633c98bc52da50d130c40316
MD5 e116b01612a8f6630c187799315de4f0
BLAKE2b-256 d45ef7fb99319da163c2ba466c9b95441fb11a620e9c8f7a275c15d511e5677a

See more details on using hashes here.

Provenance

The following attestation bundles were made for mate_cxinsys-0.1.11-py3-none-any.whl:

Publisher: publish.yml on cxinsys/mate

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page