Mean Average Precision evaluator for object detection.
Project description
mAP: Mean Average Precision for Object Detection
A simple library for the evaluation of object detectors.
In practice, a higher mAP value indicates a better performance of your detector, given your ground-truth and set of classes.
Install package
pip install mean_average_precision
Install the latest version
pip install --upgrade git+https://github.com/bes-dev/mean_average_precision.git
Example
import numpy as np
from mean_average_precision import MetricBuilder
# [xmin, ymin, xmax, ymax, class_id, difficult, crowd]
gt = np.array([
[439, 157, 556, 241, 0, 0, 0],
[437, 246, 518, 351, 0, 0, 0],
[515, 306, 595, 375, 0, 0, 0],
[407, 386, 531, 476, 0, 0, 0],
[544, 419, 621, 476, 0, 0, 0],
[609, 297, 636, 392, 0, 0, 0]
])
# [xmin, ymin, xmax, ymax, class_id, confidence]
preds = np.array([
[429, 219, 528, 247, 0, 0.460851],
[433, 260, 506, 336, 0, 0.269833],
[518, 314, 603, 369, 0, 0.462608],
[592, 310, 634, 388, 0, 0.298196],
[403, 384, 517, 461, 0, 0.382881],
[405, 429, 519, 470, 0, 0.369369],
[433, 272, 499, 341, 0, 0.272826],
[413, 390, 515, 459, 0, 0.619459]
])
# print list of available metrics
print(MetricBuilder.get_metrics_list())
# create metric_fn
metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True, num_classes=1)
# add some samples to evaluation
for i in range(10):
metric_fn.add(preds, gt)
# compute PASCAL VOC metric
print(f"VOC PASCAL mAP: {metric_fn.value(iou_thresholds=0.5, recall_thresholds=np.arange(0., 1.1, 0.1))['mAP']}")
# compute PASCAL VOC metric at the all points
print(f"VOC PASCAL mAP in all points: {metric_fn.value(iou_thresholds=0.5)['mAP']}")
# compute metric COCO metric
print(f"COCO mAP: {metric_fn.value(iou_thresholds=np.arange(0.5, 1.0, 0.05), recall_thresholds=np.arange(0., 1.01, 0.01), mpolicy='soft')['mAP']}")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
Close
Hashes for mean_average_precision-2021.4.23.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d51c3ab7afb0ce2d99fbe08611e80c4f007db19869160abfe49b27be58ad7290 |
|
MD5 | bea16c1eeaec4797d1ecaad618e23234 |
|
BLAKE2b-256 | 715e3aeb2371df7846e8c17a3ffee40b11591688e03bc24b6b6b7c5b3c36a73d |