Skip to main content

medigan is a modular open-source Python library that provides an interface to multiple generative models and automates synthetic dataset generation.

Project description

medigan

Continuous integration PyPI version DOI

A modular package for automated synthetic data generation.

  • :x: Problem 1: Data scarcity in medical imaging.

  • :x: Problem 2: Scarcity of readily reusable generative models in medical imaging.

  • :white_check_mark: Solution: medigan

    1. dataset sharing via generative models :gift:
    2. data augmentation :gift:
    3. domain adaptation :gift:
    4. synthetic data evaluation method testing with multi-model datasets :gift:

medigan provides functions for sharing and re-use of pretrained generative models in medical imaging.

Features:

  • Instead of training your own, use one a generative models from medigan to generate synthetic data.

  • Search and find a model in medigan using search terms (e.g. "Mammography" or "Endoscopy").

  • Contribute your own generative model to medigan to increase its visibility, re-use, and impact.

Available models

Output type Modality Model type Output size Base dataset Output examples model_id Hosted on Reference
Breast Calcification mammography dcgan 128x128 Inbreast sample 00001_DCGAN_MMG_CALC_ROI Zenodo (5187714)
Breast Mass mammography dcgan 128x128 Optimam sample 00002_DCGAN_MMG_MASS_ROI Zenodo (5188557) Alyafi et al (2019)
Breast Density Transfer mammography cyclegan 1332x800 BCDR sample 00003_CYCLEGAN_MMG_DENSITY_FULL Zenodo (5547263)
Breast Mass with Mask mammography pix2pix 256x256 BCDR sample
sample
00004_PIX2PIX_MASKTOMASS_BREAST_MG_SYNTHESIS Zenodo (5554950)
Breast Mass mammography dcgan 128x128 BCDR sample 00005_DCGAN_MMG_MASS_ROI Zenodo (6555188) Szafranowska et al (2022)
Breast Mass mammography wgan-gp 128x128 BCDR sample 00006_WGANGP_MMG_MASS_ROI Zenodo (6554713) Szafranowska et al (2022)
Brain Tumors on Flair, T1, T1c, T2 with Masks brain MRI inpaint GAN 256x256 BRATS 2018 sample
sample
sample
sample
sample
sample
00007_INPAINT_BRAIN_MRI Zenodo (7041737) Kim et al (2020)
Breast Mass (Mal/Benign) mammography c-dcgan 128x128 CBIS-DDSM sample 00008_C-DCGAN_MMG_MASSES Zenodo (6647349)
Polyp with Mask endoscopy pggan 256x256 HyperKvasir sample
sample
00009_PGGAN_POLYP_PATCHES_W_MASKS Zenodo (6653743) Thambawita et al (2022)
Polyp with Mask endoscopy fastgan 256x256 HyperKvasir sample
sample
00010_FASTGAN_POLYP_PATCHES_W_MASKS Zenodo (6660711) Thambawita et al (2022)
Polyp with Mask endoscopy singan ≈250x250 HyperKvasir sample
sample
00011_SINGAN_POLYP_PATCHES_W_MASKS Zenodo (6667944) Thambawita et al (2022)
Breast Mass (Mal/Benign) mammography c-dcgan 128x128 BCDR sample 00012_C-DCGAN_MMG_MASSES Zenodo (6755693)
Breast Density Transfer MLO mammography cyclegan 1332x800 OPTIMAM sample 00013_CYCLEGAN_MMG_DENSITY_OPTIMAM_MLO Zenodo (6818095)
Breast Density Transfer CC mammography cyclegan 1332x800 OPTIMAM sample 00014_CYCLEGAN_MMG_DENSITY_OPTIMAM_CC Zenodo (6818103)
Breast Density Transfer MLO mammography cyclegan 1332x800 CSAW sample 00015_CYCLEGAN_MMG_DENSITY_CSAW_MLO Zenodo (6818105)
Breast Density Transfer CC mammography cyclegan 1332x800 CSAW sample 00016_CYCLEGAN_MMG_DENSITY_CSAW_CC Zenodo (6818107)
Lung Nodules chest x-ray dcgan 128x128 NODE21 sample 00017_DCGAN_XRAY_LUNG_NODULES Zenodo (6943691)
Lung Nodules chest x-ray wgan-gp 128x128 NODE21 sample 00018_WGANGP_XRAY_LUNG_NODULES Zenodo (6943761)
Chest Xray Images chest x-ray pggan 1024x1024 NODE21 sample 00019_PGGAN_CHEST_XRAY Zenodo (6943803)
Chest Xray Images chest x-ray pggan 1024x1024 ChestX-ray14 sample 00020_PGGAN_CHEST_XRAY Zenodo (7046280) Segal et al (2021)

Model information can be found in the model documentation and in the global.json model metadata.

Installation

To install the current release, simply run:

pip install medigan

Getting Started

Examples and notebooks are located at examples folder

Documentation is available at medigan.readthedocs.io

Generation example

DCGAN

Create mammography calcification images using DCGAN model

# import medigan and initialize Generators
from medigan import Generators
generators = Generators()

# generate 6 samples with model 1 (00001_DCGAN_MMG_CALC_ROI)
generators.generate(model_id=1, num_samples=6)

sample sample sample sample sample sample

CYCLEGAN

Create mammograms translated from Low-to-High Breast Density using CYCLEGAN model

from medigan import Generators
generators = Generators()
# model 3 is "00003_CYCLEGAN_MMG_DENSITY_FULL"
generators.generate(model_id=3, num_samples=1)

samplesample

Search Example

Search for a model inside medigan using keywords

# import medigan and initialize Generators
from medigan import Generators
generators = Generators()

# list all models
print(generators.list_models())

# search for models that have specific keywords in their config
keywords = ['DCGAN', 'Mammography', 'BCDR']
results = generators.find_matching_models_by_values(keywords)

Get Model as Dataloader

We can directly receive a torch.utils.data.DataLoader object for any of medigan's generative models.

from medigan import Generators
generators = Generators()
# model 4 is "00004_PIX2PIX_MASKTOMASS_BREAST_MG_SYNTHESIS"
dataloader = generators.get_as_torch_dataloader(model_id=4, num_samples=3)

Visualize the contents of the dataloader.

from matplotlib import pyplot as plt
import numpy as np

plt.figure()
# subplot with 2 rows and len(dataloader) columns
f, img_array = plt.subplots(2, len(dataloader)) 

for batch_idx, data_dict in enumerate(dataloader):
    sample = np.squeeze(data_dict.get("sample"))
    mask = np.squeeze(data_dict.get("mask"))
    img_array[0][batch_idx].imshow(sample, interpolation='nearest', cmap='gray')
    img_array[1][batch_idx].imshow(mask, interpolation='nearest', cmap='gray')
plt.show()

sample

Visualize A Model

With our interface, it is possible to generate sample by manually setting the conditional inputs or latent vector values. The sample is updated in realtime, so it's possible to observe how the images changes when the parameters are modified. The visualization is available only for models with accessible input latent vector. Depending on a model, a conditional input may be also available or synthetic segmentation mask.

from medigan import Generators

generators = Generators()
# model 10 is "00010_FASTGAN_POLYP_PATCHES_W_MASKS"
generators.visualize(10)

sample

Contribute A Model

Create an init.py file in your model's root folder.

Next, run the following code to contribute your model to medigan.

  • Your model will be stored on Zenodo.

  • Also, a Github issue will be created to add your model's metadata to medigan's global.json.

  • To do so, please provide a github access token (get one here) and a zenodo access token (get one here), as shown below. After creation, the zenodo access token may take a few minutes before being recognized in zenodo API calls.

from medigan import Generators
generators = Generators()

# Contribute your model
generators.contribute(
    model_id = "00100_YOUR_MODEL", # assign an ID
    init_py_path ="path/ending/with/__init__.py",
    model_weights_name = "10000",
    model_weights_extension = ".pt",
    generate_method_name = "generate", # in __init__.py
    dependencies = ["numpy", "torch"], 
    creator_name = "YOUR_NAME",
    creator_affiliation = "YOUR_AFFILIATION",
    zenodo_access_token = 'ZENODO_ACCESS_TOKEN',
    github_access_token = 'GITHUB_ACCESS_TOKEN',

Thank you for your contribution!

You will soon receive a reply in the Github issue that you created for your model by running generators.contribute().

Contributions in General

We welcome contributions to medigan. Please send us an email or read the contributing guidelines regarding contributing to the medigan project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medigan-0.0.2.tar.gz (52.4 kB view details)

Uploaded Source

File details

Details for the file medigan-0.0.2.tar.gz.

File metadata

  • Download URL: medigan-0.0.2.tar.gz
  • Upload date:
  • Size: 52.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for medigan-0.0.2.tar.gz
Algorithm Hash digest
SHA256 fdac3383b4f59d5826dff45cec108e62ce753398c859c183e14af3cd9fbd8920
MD5 b795ef23d13a84cb5fe4643804d56fdb
BLAKE2b-256 f923f9b40fa54c33b39fffd6a30eeafbe7be0391e50167eb39fe9303914192be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page