Skip to main content

Shows top suspects for memory leaks in your Python program.

Project description

Usage:

pip install mem_top
from mem_top import mem_top

# From time to time:
logging.debug(mem_top()) # Or just print().

Result:

refs:
144997  <type 'collections.defaultdict'> defaultdict(<type 'collections.deque'>, {<GearmanJobRequest task='...', unique='.
144996  <type 'dict'> {'.:..............:.......': <GearmanJobRequest task='..................', unique='.................
18948   <type 'dict'> {...
1578    <type 'dict'> {...
968     <type 'dict'> {...
968     <type 'dict'> {...
968     <type 'dict'> {...
767     <type 'list'> [...
726     <type 'dict'> {...
608     <type 'dict'> {...

types:
292499  <type 'dict'>
217912  <type 'collections.deque'>
72702   <class 'gearman.job.GearmanJob'>
72702   <class 'gearman.job.GearmanJobRequest'>
12340   <type '...
3103    <type '...
1112    <type '...
855     <type '...
767     <type '...
532     <type '...

Explaining result:

  • Noticed a leak of 6GB RAM and counting.

  • Added “mem_top” and let it run for a while.

  • When got the result above it became absolutely clear who is leaking here - the Python client of Gearman.

  • Found its known bug - https://github.com/Yelp/python-gearman/issues/10 leaking defaultdict of deques, and a dict of GearmanJobRequest-s, just as the “mem_top” showed.

  • Replaced “python-gearman” - long story: stale 2.0.2 at PyPI, broken 2.0.X at github, etc.

  • “mem_top” confirmed the leak is now completely closed.

Config defaults:

mem_top(limit=10, width=100, sep='\n', refs_format='{num}\t{type} {obj}', types_format='{num}\t {obj}')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mem_top-0.1.0.tar.gz (1.9 kB view details)

Uploaded Source

File details

Details for the file mem_top-0.1.0.tar.gz.

File metadata

  • Download URL: mem_top-0.1.0.tar.gz
  • Upload date:
  • Size: 1.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for mem_top-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b870ef62fc18b310db61ef16aa982cbbea23aa08ff7b474b2eb1e8067630f61a
MD5 18a5af60a4821de5ef6e20e7ca41bf3d
BLAKE2b-256 2bd1db21af230c205e049b5a8fa3d03011964821fad7d547c54ca1be6befd376

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page