A python package for count regression of rare events assisted by metaheuristics
Project description
The Below code demonstrates how to set up automatic optimization assisted by the harmony search algorithm. References to the Differential Evolution and Simulated Annealing has been mentioned (change accordingly)
Quick install: Requires Python 3.10
Install metacountregressor
using pip as follows:
pip install metacountregressor
```python
import pandas as pd
import numpy as np
from metacountregressor.solution import ObjectiveFunction
from metacountregressor.metaheuristics import (harmony_search,
differential_evolution,
simulated_annealing)
Basic setup. Read in data, and select optimization algorithm
# Read data from CSV file
df = pd.read_csv(
"https://raw.githubusercontent.com/zahern/data/main/Ex-16-3.csv")
X = df
y = df['FREQ'] # Frequency of crashes
X['Offset'] = np.log(df['AADT']) # Explicitley define how to offset the data, no offset otherwise
# Drop Y, selected offset term and ID as there are no panels
X = df.drop(columns=['FREQ', 'ID', 'AADT'])
#some example argument, these are defualt so the following line is just for claritity
arguments = {'algorithm': 'hs', 'test_percentage': 0.2, 'test_complexity': 6, 'instance_number':1}
# Fit the model with metacountregressor
obj_fun = ObjectiveFunction(X, y, **arguments)
#replace with other metaheuristics if desired
results = harmony_search(obj_fun)
Estimating as Panel Data...
repair constraint violated, skipping over..
repair constraint violated, skipping over..
dominate soltuion
--------------------------------------------------
WARNING: Convergence was not reached during estimation. The given estimates may not be reliable
-------------------------------------------------------------------------------------
Log-Likelihood: -787.6392029228095
-------------------------------------------------------------------------------------
+----------------------------+-----+--------+----------+----------+------------+
| Effect | tau | Coeff | Std. Err | z-values | Prob |z|>Z |
+============================+=====+========+==========+==========+============+
| const | no | -19.65 | 3.37 | -5.82 | 0.00*** |
+----------------------------+-----+--------+----------+----------+------------+
| FC | no | -0.08 | 0.09 | -0.90 | 0.37 |
+----------------------------+-----+--------+----------+----------+------------+
| PEAKHR | no | 3.60 | 1.46 | 2.48 | 0.01* |
+----------------------------+-----+--------+----------+----------+------------+
| TANGENT | no | 9.20 | 3.49 | 2.64 | 0.01* |
+----------------------------+-----+--------+----------+----------+------------+
| CURVES | no | 5.13 | 0.41 | 12.54 | 0.00*** |
+----------------------------+-----+--------+----------+----------+------------+
| MEDWIDTH | no | 0.31 | 0.10 | 3.18 | 0.00*** |
+----------------------------+-----+--------+----------+----------+------------+
| FRICTION | log | 0.35 | 0.16 | 2.22 | 0.03* |
+----------------------------+-----+--------+----------+----------+------------+
| SLOPE | no | -0.11 | 0.17 | -0.64 | 0.52 |
+----------------------------+-----+--------+----------+----------+------------+
| MIMEDSH | no | -0.72 | 0.25 | -2.85 | 0.00*** |
+----------------------------+-----+--------+----------+----------+------------+
| INCLANES | no | -0.42 | 0.24 | -1.74 | 0.08. |
+----------------------------+-----+--------+----------+----------+------------+
| MIMEDSH (Std. Dev.) | | 0.10 | 0.22 | 0.45 | 0.65 |
| tn_normal | | | | | |
+----------------------------+-----+--------+----------+----------+------------+
| (Chol.) INCLANEStn_normal | | 0.10 | 0.24 | 0.41 | 0.68 |
| .INCLANEStn_normal | | | | | |
+----------------------------+-----+--------+----------+----------+------------+
| nb | | 1.37 | 0.00 | 50.00 | 0.00*** |
+----------------------------+-----+--------+----------+----------+------------+
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
c:\Users\n9471103\MetaCountRegressor\README.ipynb Cell 5 in <cell line: 14>()
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W3sZmlsZQ%3D%3D?line=11'>12</a> obj_fun = ObjectiveFunction(X, y, **arguments)
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W3sZmlsZQ%3D%3D?line=12'>13</a> #replace with other metaheuristics if desired
---> <a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W3sZmlsZQ%3D%3D?line=13'>14</a> results = harmony_search(obj_fun)
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:408, in harmony_search(objective_function, initial_harmonies, hyperparameters, **kwargs)
406 start = datetime.now()
407 hs = HarmonySearch(objective_function)
--> 408 results = hs.run(initial_harmonies, mod_init = man)
409 end = datetime.now()
410 elapsed_time = end - start
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:1546, in HarmonySearch.run(self, initial_harmonies, mod_init)
1544 self._obj_fun.set_random_seed()
1545 # fill harmony_memory using random parameter values by default, but with initial_harmonies if provided
-> 1546 self._initialize(initial_harmonies, mod_init)
1547 if self.pf.get_objective_is_multi():
1548 self._pareto_harmony_memory = self.pf.non_dominant_sorting(self._harmony_memory)
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:1825, in HarmonySearch._initialize(self, initial_harmonies, model_nature)
1821 initial_harmonies[0] = vector
1823 for i in range(0, self._obj_fun.get_hms()):
1824 #print(initial_harmonies[i])
-> 1825 fitness = self._obj_fun.get_fitness(initial_harmonies[i], self.pf.get_objective_is_multi(), max_routine = 2)
1826 #print(initial_harmonies[i])
1827 if self.pf.get_objective_is_multi():
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:2319, in ObjectiveFunction.get_fitness(self, vector, multi, verbose, max_routine)
2314 model_nature = self.get_distinct_model_parts(
2315 vector) # todo return insignificant p values
2318 a = {}
-> 2319 obj_1, model_mod = self.makeRegression(model_nature, layout=layout, **a)
2324 sub_slns.append([obj_1.copy()])
2326 obj_best = obj_1.copy()
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:6417, in ObjectiveFunction.makeRegression(self, model_nature, layout, *args, **kwargs)
6414 try:
6415 if model_nature.get('dispersion') is not None:
-> 6417 obj_1, log_lik, betas, stderr, pvalues, zvalues, is_halton, is_delete = self.fitRegression(model_nature)
6418 if obj_1 is None:
6419 obj_1 = Solution()
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:5969, in ObjectiveFunction.fitRegression(self, mod, dispersion, maxiter, batch_size, num_hess)
5967 if self.numerical_hessian_calc:
5968 try:
-> 5969 bb_hess = self._numerical_hessian(betas_est.x, grad_args, False)
5970 except Exception as e:
5971 bb_hess = None
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:3474, in ObjectiveFunction._numerical_hessian(self, betas, args, jac)
3471 def loglike(p): return self._loglik_gradient(
3472 p, *args)
3473 robust = False
-> 3474 hess = approx_hess(betas, loglike)
3475 hess /= self.N
3476 hess_inv1 = np.linalg.pinv(hess)
File ~\AppData\Roaming\Python\Python310\site-packages\statsmodels\tools\numdiff.py:454, in approx_hess3(x, f, epsilon, args, kwargs)
450 for i in range(n):
451 for j in range(i, n):
452 hess[i, j] = np.squeeze(
453 (f(*((x + ee[i, :] + ee[j, :],) + args), **kwargs)
--> 454 - f(*((x + ee[i, :] - ee[j, :],) + args), **kwargs)
455 - (f(*((x - ee[i, :] + ee[j, :],) + args), **kwargs)
456 - f(*((x - ee[i, :] - ee[j, :],) + args), **kwargs))
457 )/(4.*hess[i, j])
458 )
459 hess[j, i] = hess[i, j]
460 return hess
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:3471, in ObjectiveFunction._numerical_hessian.<locals>.loglike(p)
-> 3471 def loglike(p): return self._loglik_gradient(
3472 p, *args)
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:4941, in ObjectiveFunction._loglik_gradient(self, betas, Xd, y, draws, Xf, Xr, batch_size, return_gradient, return_gradient_n, dispersion, test_set, return_EV, verbose, corr_list, zi_list, exog_infl, draws_grouped, Xgroup, model_nature, kwarg, **kwargs)
4937 chol_mat = self._chol_mat(
4938 len(self.rdm_cor_fit), br, brstd, self.rdm_cor_fit)
4939 self.chol_mat = chol_mat.copy()
4940 Br = br[None, :, None] + \
-> 4941 np.matmul(chol_mat[:len(br), :len(br)], draws_)
4942 self.Br = Br.copy()
4945 if model_nature is not None:
KeyboardInterrupt:
Change the arguments.
Reduce down the list sizes where necsessary
#Solution Arguments
arguments = {
'algorithm': 'hs',
'test_percentage': 0.2,
'test_complexity': 6, #or list based [0, 1, 2, 6]
'instance_number': 'name',
'is_multi': 1,
'distribution': ['Normal', 'LnNormal', 'Triangular', 'Unifrom'],
'Model': [0,1], # or equivalently ['POS', 'NB']
'transformations': ['no', 'sqrt', 'archsinh'],
'_max_time': 10
}
obj_fun = ObjectiveFunction(X, y, **arguments)
results = harmony_search(obj_fun)
Estimating as Panel Data...
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
c:\Users\n9471103\MetaCountRegressor\README.ipynb Cell 7 in <cell line: 14>()
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=1'>2</a> arguments = {
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=2'>3</a> 'algorithm': 'hs',
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=3'>4</a> 'test_percentage': 0.2,
(...)
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=10'>11</a> '_max_time': 10
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=11'>12</a> }
<a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=12'>13</a> obj_fun = ObjectiveFunction(X, y, **arguments)
---> <a href='vscode-notebook-cell:/c%3A/Users/n9471103/MetaCountRegressor/README.ipynb#W5sZmlsZQ%3D%3D?line=13'>14</a> results = harmony_search(obj_fun)
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:408, in harmony_search(objective_function, initial_harmonies, hyperparameters, **kwargs)
406 start = datetime.now()
407 hs = HarmonySearch(objective_function)
--> 408 results = hs.run(initial_harmonies, mod_init = man)
409 end = datetime.now()
410 elapsed_time = end - start
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:1546, in HarmonySearch.run(self, initial_harmonies, mod_init)
1544 self._obj_fun.set_random_seed()
1545 # fill harmony_memory using random parameter values by default, but with initial_harmonies if provided
-> 1546 self._initialize(initial_harmonies, mod_init)
1547 if self.pf.get_objective_is_multi():
1548 self._pareto_harmony_memory = self.pf.non_dominant_sorting(self._harmony_memory)
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\metaheuristics.py:1825, in HarmonySearch._initialize(self, initial_harmonies, model_nature)
1821 initial_harmonies[0] = vector
1823 for i in range(0, self._obj_fun.get_hms()):
1824 #print(initial_harmonies[i])
-> 1825 fitness = self._obj_fun.get_fitness(initial_harmonies[i], self.pf.get_objective_is_multi(), max_routine = 2)
1826 #print(initial_harmonies[i])
1827 if self.pf.get_objective_is_multi():
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:2319, in ObjectiveFunction.get_fitness(self, vector, multi, verbose, max_routine)
2314 model_nature = self.get_distinct_model_parts(
2315 vector) # todo return insignificant p values
2318 a = {}
-> 2319 obj_1, model_mod = self.makeRegression(model_nature, layout=layout, **a)
2324 sub_slns.append([obj_1.copy()])
2326 obj_best = obj_1.copy()
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:6417, in ObjectiveFunction.makeRegression(self, model_nature, layout, *args, **kwargs)
6414 try:
6415 if model_nature.get('dispersion') is not None:
-> 6417 obj_1, log_lik, betas, stderr, pvalues, zvalues, is_halton, is_delete = self.fitRegression(model_nature)
6418 if obj_1 is None:
6419 obj_1 = Solution()
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:5963, in ObjectiveFunction.fitRegression(self, mod, dispersion, maxiter, batch_size, num_hess)
5961 mod['dispersion_penalty'] = abs(b[-1])
5962 grad_args = (X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod)
-> 5963 betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5964 method=method2, tol=tol['ftol'],
5965 options={'gtol': tol['gtol']}, bounds = bounds)
5967 if self.numerical_hessian_calc:
5968 try:
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:5260, in ObjectiveFunction._minimize(self, loglik_fn, x, args, method, tol, options, bounds)
5258 return minimize(loglik_fn, x, args=args, jac=args[6], hess=args[7], method='BFGS', tol=tol, options=options)
5259 elif method == "L-BFGS-B":
-> 5260 return minimize(loglik_fn, x, args=args, jac=args[6], method='L-BFGS-B', bounds =bounds, tol=tol, options=options)
5261 else:
5262 raise ValueError(f"Unknown optimization method: {method}")
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_minimize.py:710, in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
707 res = _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
708 **options)
709 elif meth == 'l-bfgs-b':
--> 710 res = _minimize_lbfgsb(fun, x0, args, jac, bounds,
711 callback=callback, **options)
712 elif meth == 'tnc':
713 res = _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
714 **options)
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_lbfgsb_py.py:361, in _minimize_lbfgsb(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finite_diff_rel_step, **unknown_options)
355 task_str = task.tobytes()
356 if task_str.startswith(b'FG'):
357 # The minimization routine wants f and g at the current x.
358 # Note that interruptions due to maxfun are postponed
359 # until the completion of the current minimization iteration.
360 # Overwrite f and g:
--> 361 f, g = func_and_grad(x)
362 elif task_str.startswith(b'NEW_X'):
363 # new iteration
364 n_iterations += 1
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py:286, in ScalarFunction.fun_and_grad(self, x)
284 self._update_x_impl(x)
285 self._update_fun()
--> 286 self._update_grad()
287 return self.f, self.g
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py:256, in ScalarFunction._update_grad(self)
254 def _update_grad(self):
255 if not self.g_updated:
--> 256 self._update_grad_impl()
257 self.g_updated = True
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py:173, in ScalarFunction.__init__.<locals>.update_grad()
171 self._update_fun()
172 self.ngev += 1
--> 173 self.g = approx_derivative(fun_wrapped, self.x, f0=self.f,
174 **finite_diff_options)
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_numdiff.py:505, in approx_derivative(fun, x0, method, rel_step, abs_step, f0, bounds, sparsity, as_linear_operator, args, kwargs)
502 use_one_sided = False
504 if sparsity is None:
--> 505 return _dense_difference(fun_wrapped, x0, f0, h,
506 use_one_sided, method)
507 else:
508 if not issparse(sparsity) and len(sparsity) == 2:
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_numdiff.py:576, in _dense_difference(fun, x0, f0, h, use_one_sided, method)
574 x = x0 + h_vecs[i]
575 dx = x[i] - x0[i] # Recompute dx as exactly representable number.
--> 576 df = fun(x) - f0
577 elif method == '3-point' and use_one_sided[i]:
578 x1 = x0 + h_vecs[i]
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_numdiff.py:456, in approx_derivative.<locals>.fun_wrapped(x)
455 def fun_wrapped(x):
--> 456 f = np.atleast_1d(fun(x, *args, **kwargs))
457 if f.ndim > 1:
458 raise RuntimeError("`fun` return value has "
459 "more than 1 dimension.")
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py:137, in ScalarFunction.__init__.<locals>.fun_wrapped(x)
133 self.nfev += 1
134 # Send a copy because the user may overwrite it.
135 # Overwriting results in undefined behaviour because
136 # fun(self.x) will change self.x, with the two no longer linked.
--> 137 fx = fun(np.copy(x), *args)
138 # Make sure the function returns a true scalar
139 if not np.isscalar(fx):
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:5030, in ObjectiveFunction._loglik_gradient(self, betas, Xd, y, draws, Xf, Xr, batch_size, return_gradient, return_gradient_n, dispersion, test_set, return_EV, verbose, corr_list, zi_list, exog_infl, draws_grouped, Xgroup, model_nature, kwarg, **kwargs)
5027 betas_last = betas[-1]
5029 # print(betas_last)
-> 5030 proba_, proba_n = self.prob_obs_draws_all_at_once(
5031 eVd, np.atleast_3d(y), betas_last, dispersion)
5032 # self._prob_product_against_panels()
5033
5034
(...)
5037
5038 # print(top_stats)
5040 proba.append(dev.to_cpu(proba_))
File c:\Users\n9471103\MetaCountRegressor\metacountregressor\solution.py:4619, in ObjectiveFunction.prob_obs_draws_all_at_once(self, eVi, y, disp, dispersion)
4617 def prob_obs_draws_all_at_once(self, eVi, y, disp, dispersion):
4618 if dispersion == 0:
-> 4619 proba_r = poisson.pmf(y, eVi)
4620 elif dispersion == 1:
4621 #print(np.shape(y), print(np.shape(eVi)))
4622 #proba_r = self._nonlog_nbin(y, eVi, disp)
4623 #proba_r2 = nbinom.pmf(y, disp*eVi**0, disp/(eVi+disp))
4624 proba_r = self.nbinom_pmf_batched(y, eVi, disp)
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\stats\_distn_infrastructure.py:3378, in rv_discrete.pmf(self, k, *args, **kwds)
3376 if np.any(cond):
3377 goodargs = argsreduce(cond, *((k,)+args))
-> 3378 place(output, cond, np.clip(self._pmf(*goodargs), 0, 1))
3379 if output.ndim == 0:
3380 return output[()]
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\stats\_discrete_distns.py:865, in poisson_gen._pmf(self, k, mu)
863 def _pmf(self, k, mu):
864 # poisson.pmf(k) = exp(-mu) * mu**k / k!
--> 865 return exp(self._logpmf(k, mu))
File ~\AppData\Roaming\Python\Python310\site-packages\scipy\stats\_discrete_distns.py:860, in poisson_gen._logpmf(self, k, mu)
859 def _logpmf(self, k, mu):
--> 860 Pk = special.xlogy(k, mu) - gamln(k + 1) - mu
861 return Pk
KeyboardInterrupt:
Initial Solution Configurement
#Model Decisions, Specify for Intial Optimization
manual_fit_spec = {
'fixed_terms': ['SINGLE', 'LENGTH'],
'rdm_terms': ['AADT:normal'],
'rdm_cor_terms': ['GRADEBR:uniform', 'CURVES:triangular'],
'grouped_terms': [],
'hetro_in_means': ['ACCESS:normal', 'MINRAD:normal'],
'transformations': ['no', 'no', 'log', 'no', 'no', 'no', 'no'],
'dispersion': 1
}
#Search Arguments
arguments = {
'algorithm': 'hs',
'test_percentage': 0.2,
'test_complexity': 6,
'instance_number': 'name',
'Manual_Fit': manual_fit_spec
}
obj_fun = ObjectiveFunction(X, y, **arguments)
Estimating as Panel Data...
off for now turn back on
simarly to return the results feed the objective function into a metaheuristic solution algorithm
Notes
Capabilities of the software include:
- Handling of Panel Data
- Support for Data Transformations
- Implementation of Models with Correlated and Non-Correlated Random Parameters
- A variety of mixing distributions for parameter estimations, including normal, lognormal, truncated normal, Lindley, Gamma, triangular, and uniform distributions Capability to handle heterogeneity in the means of the random parameters
- Use of Halton draws for simulated maximum likelihood estimation
- Support for grouped random parameters with unbalanced groups
- Post-estimation tools for assessing goodness of fit, making predictions, and conducting out-of-sample validation
- Multiple parameter optimization routines, such as the BFGS method
- Comprehensive hypothesis testing using single objectives, such as in-sample BIC and log-likelihood
- Extensive hypothesis testing using multiple objectives, such as in-sample BIC and out-of-sample MAE (Mean Absolute Error), or in-sample AIC and out-of-sample MSPE (mean-square prediction errorr)
- Features that allow analysts to pre-specify variables, interactions, and mixing distributions, among others
- Meta-heuristic Guided Optimization, including techniques like Simulated Annealing, Harmony Search, and Differential Evolution
- Customization of Hyper-parameters to solve problems tailored to your dataset
- Out-of-the-box optimization capability using default metaheuristics
arguments:
In reference to the arguments that can be fed into the solution alrogithm, a dictionary system is utilised with relecant names these include
Arguments
The following list describes the arguments available in this function. By default, all of the capabilities described are enabled unless specified otherwise as an argument. For list arguments, include all desired elements in the list to ensure the corresponding options are considered. Example code will be provided later in this guide.
-
complexity_level
: This argument accepts an integer between 0 to 5 or a list of such integers. Each integer represents a hierarchy level for estimable models associated with each explanatory variable. Here is a summary of the hierarchy:- 0: Null model
- 1: Simple fixed effects model
- 2: Random parameters model
- 3: Random correlated parameters model
- 4: Grouped random parameters model
- 5: Heterogeneity in the means random parameter model
-
distributions
: This argument accepts a list of strings where each string corresponds to a distribution. Valid options include:- "Normal"
- "Lindley"
- "Uniform"
- "LogNormal"
- "Triangular"
- "Gamma"
- "TruncatedNormal"
- Any of the above, concatenated with ":grouped" (e.g., "Normal:grouped"; requires a grouping term defined in the model)
-
Model
: This argument specifies the model form. It can be a list of integers representing different models to test:- 0: Poisson
- 1: Negative-Binomial
- 2: Generalized-Poisson
-
transformations
: This argument accepts a list of strings representing available transformations within the framework. Valid options include:- "no"
- "square-root"
- "logarithmic"
- "archsinh"
- "as factor"
-
is_multi
: This argument accepts an integer indicating whether single or multiple objectives are to be tested (0 for single, 1 for multiple). -
testing_split
: This argument is used for multi-objective optimization. Define it as a decimal; for example, 0.2 represents 20% of the data for testing. -
_max_time
: This argument is used to add a termination time in the algorithm. It takes values as seconds. Note the time is only dependenant on the time after intial population of solutions are generated.
Contact
If you have any questions, ideas to improve MetaCountRegressor, or want to report a bug, just open a new issue in metacountregressor GitHub repository.
Citing MetaCountRegressor
Please cite MetaCountRegressor as follows:
Ahern, Z., Corry P., Paz A. (2022). MetaCountRegressor [Computer software]. https://pypi.org/project/metacounregressor/
Or using BibTex as follows:
@misc{Ahern2023,
author = {Zeke Ahern and Paul Corry and Alexander Paz},
journal = {PyPi},
title = {metacountregressor · PyPI},
url = {https://pypi.org/project/metacountregressor/0.1.28/},
year = {2023},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for metacountregressor-0.1.39-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6afd914fa38f5dec3dd763203d521c4f013cea97e3eb79df7fa13fe9284b86e4 |
|
MD5 | 2a14aa0712572b5742a41d4bf8f19ca7 |
|
BLAKE2b-256 | 0b08d20317ef940cdf1c0d960b17a6f647447171f8e7570dd51a27ee265fbe76 |